Ultrabroadband mid-infrared emission from Cr2+-doped infrared transparent chalcogenide glass ceramics embedded with thermally grown ZnS nanorods

Abstract We report, for the first time to our knowledge, an ultrabroadband mid-infrared (MIR) emission in the range of 1800–2800 nm at room temperature from a Cr2+-doped chalcogenide glass ceramic embedded with pure hexagonal (wurtzite) β-ZnS nanorods and study the emission-dependent properties on the doping concentration of Cr2+. A new family of chalcogenide glasses based on (100 − x) Ge1.5As2S6.5 – x ZnSe (in mol.%) was prepared by melt-quenching method. The Cr2+: β-ZnS nanorods of ˜150 nm in diameter and ˜1 μm in length were grown in the Cr2+-doped glass after thermal annealing. The compositional variations of glass structures and optical properties were studied. The crystalline phase, morphology of the thermally grown nanorods, and the microscopic elemental distributions were characterized using advanced nanoscale transmission electron microscopy analyses.

[1]  E. Sorokin,et al.  Ultrabroadband infrared solid-state lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Jing Ren,et al.  Spectroscopic properties of Ce3+/Yb3+/Ho3+ triply doped bismuthate glasses , 2017 .

[3]  H. Tao,et al.  Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses , 2016 .

[4]  Tian Gu,et al.  Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide , 2018 .

[5]  Bo Fan,et al.  The second-harmonic generation in chalcogenide glass-ceramic doped with CdS nanocrystals , 2014 .

[6]  Shixun Dai,et al.  Chalcogenide glass-ceramics: Functional design and crystallization mechanism , 2018 .

[7]  J. Banfield,et al.  Size-dependent phase transformation kinetics in nanocrystalline ZnS. , 2005, Journal of the American Chemical Society.

[8]  S. Mirov,et al.  Mid-IR random lasing of Cr-doped ZnS nanocrystals , 2010 .

[9]  Noel Healy,et al.  Zinc Selenide Optical Fibers , 2011, Advanced materials.

[10]  Elfed Lewis,et al.  Chalcogenide glasses with embedded ZnS nanocrystals: Potential mid‐infrared laser host for divalent transition metal ions , 2018 .

[11]  Xinghua Yang,et al.  Mixed alkali effects in Er 3+ ‐doped borate glasses: Influence on physical, mechanical, and photoluminescence properties , 2019, Journal of the American Ceramic Society.

[12]  Lirong Zheng,et al.  Controlling Selective Doping and Energy Transfer between Transition Metal and Rare Earth Ions in Nanostructured Glassy Solids , 2018 .

[13]  Robert T. Downs,et al.  Morphology-tuned wurtzite-type ZnS nanobelts , 2005, Nature materials.

[14]  Mike Mirov,et al.  Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Yan Yang,et al.  Structural origin of fragility in Ge-As-S glasses investigated by calorimetry and Raman spectroscopy. , 2015, The journal of physical chemistry. B.

[16]  A. Varshneya,et al.  Gibbs-DiMarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses , 1991 .

[17]  S. Mirov,et al.  Mid-infrared Cr2+:ZnSe random powder lasers. , 2008, Optics express.

[18]  S. Sainkar,et al.  XPS study of some selected selenium compounds , 1986 .

[19]  Jing Ren,et al.  CsCl Modified Ge–Ga–S Glasses Codoped with Eu2+ and Mn2+: A Potential Yellow Phosphor for Solid‐State Lighting , 2012 .

[20]  S. Mirov,et al.  Hot-pressed chromium doped zinc sulfide infrared transparent ceramics , 2016 .

[21]  J. D. Musgraves,et al.  Raman spectroscopic analysis of the Ge–As–S chalcogenide glass-forming system , 2014 .

[22]  Shouhuan Zhou,et al.  Nanocrystalline Cr(2+)-doped ZnSe nanowires laser. , 2013, Nano letters.

[23]  P. Eklund,et al.  Raman Scattering from Surface Phonons in Rectangular Cross-sectional w-ZnS Nanowires , 2004 .

[24]  L. A. Ketkova,et al.  Preparation of composite materials for fiber optics based on chalcogenide glasses containing ZnS(ZnSe):Cr(2+) crystals , 2013 .

[25]  Jun Yang,et al.  The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties , 2018 .

[26]  Igor Moskalev,et al.  Progress in Cr2+ and Fe2+ doped mid‐IR laser materials , 2010 .

[27]  Y. Messaddeq,et al.  Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission. , 2018, Optics letters.

[28]  C. Battistoni,et al.  An XPS study of the electronic structure of the ZnxCd1−xCr2(X = S, Se) spinel system , 1989 .

[29]  S B Mirov,et al.  Crystalline Cr²⁺:ZnSe/chalcogenide glass composites as active mid-IR materials. , 2011, Optics letters.

[30]  Valentin Gapontsev,et al.  Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  Zhiyong Yang,et al.  1.8–2.7 μm emission from As-S-Se chalcogenide glasses containing ZnSe: Cr2+ particles , 2019, Journal of Non-Crystalline Solids.

[32]  E. Davis,et al.  Structure of amorphous GexSe1−x and GexSeyZnz thin films: an EXAFS study , 2002 .

[33]  D. Hewak,et al.  Optical, Thermal, and Mechanical Characterization of Ga2Se3‐Added GLS Glass , 2017, Advanced materials.

[34]  M. Rochette,et al.  Theoretical study of continuous-wave lasing in Cr:ZnSe:glass composite waveguides , 2012, IEEE Photonics Conference 2012.

[35]  B. Luther-Davies,et al.  Raman spectra of GexAsySe1−x−y glasses , 2009 .

[36]  Gerald Farrell,et al.  Distribution of Tm3+ and Ni2+ in chalcogenide glass ceramics containing Ga2S3 nanocrystals: Influence on photoluminescence properties , 2019, Journal of the European Ceramic Society.