A PSO-Based Web Document Query Optimization Algorithm

The particle swarm optimization(PSO) algorithm is a robust stochastic evolutionary algorithm based on the movement and intelligence of swarms.To efficiently retrieve relevant documents from the explosive growth of the Internet and other sources of information access,a PSO-based algorithm for Web document query optimization is presented Experimental results show that the proposed algorithm can improve the precision of document retrieval markedly compared with relevant feedback and genetic algorithm.

[1]  G. Cottrell,et al.  Optimizing Similarity Using Multi-Query Relevance Feedback , 1998, J. Am. Soc. Inf. Sci..

[2]  Donna K. Harman,et al.  Overview of the First Text REtrieval Conference (TREC-1) , 1992, TREC.

[3]  Donna Harman,et al.  The First Text REtrieval Conference (TREC-1) , 1993 .

[4]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[5]  Jorng-Tzong Horng,et al.  Applying genetic algorithms to query optimization in document retrieval , 2000, Inf. Process. Manag..

[6]  Hsinchun Chen Machine learning for information retrieval: neural networks, symbolic learning, and genetic algorithms , 1995 .

[7]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[8]  Amit Singhal,et al.  Pivoted document length normalization , 1996, SIGIR 1996.

[9]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.