Correction to: A general branch-and-bound framework for continuous global multiobjective optimization
暂无分享,去创建一个
[1] Nikolaos V. Sahinidis,et al. Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .
[2] S. Ruzika,et al. Approximation Methods in Multiobjective Programming , 2005 .
[3] Oliver Stein,et al. Convergent upper bounds in global minimization with nonlinear equality constraints , 2020, Math. Program..
[4] A. Neumaier. Interval methods for systems of equations , 1990 .
[5] Eldon Hansen,et al. Global optimization using interval analysis , 1992, Pure and applied mathematics.
[6] Boglárka G.-Tóth,et al. Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods , 2009, Comput. Optim. Appl..
[7] N. Popovici,et al. New algorithms for discrete vector optimization based on the Graef-Younes method and cone-monotone sorting functions , 2018 .
[8] Daniel Scholz. The multicriteria big cube small cube method , 2010 .
[9] Edward M. B. Smith,et al. Global optimisation of nonconvex MINLPs , 1997 .
[10] P. Loridan. ε-solutions in vector minimization problems , 1984 .
[11] Garth P. McCormick,et al. Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..
[12] U. Aickelin,et al. Parallel Problem Solving from Nature - PPSN VIII , 2004, Lecture Notes in Computer Science.
[13] P. Belotti. Disjunctive Cuts for Nonconvex MINLP , 2012 .
[14] James E. Falk,et al. Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..
[15] To Thanh Binh. A Multiobjective Evolutionary Algorithm - The Study Cases , 1999 .
[16] Christodoulos A. Floudas,et al. αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..
[17] Julius Žilinskas,et al. Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems , 2015, Commun. Nonlinear Sci. Numer. Simul..
[18] Edward M. B. Smith,et al. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .
[19] Peter J. Fleming,et al. Multiobjective genetic algorithms made easy: selection sharing and mating restriction , 1995 .
[20] Yaroslav D. Sergeyev,et al. Non-convex multi-objective optimization , 2017, Optim. Methods Softw..
[21] A. Neumaier,et al. A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .
[22] Oliver Stein,et al. Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints , 2015 .
[23] Kathrin Klamroth,et al. Efficient computation of the search region in multi-objective optimization , 2017, Eur. J. Oper. Res..
[24] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[25] Kalyanmoy Deb,et al. Finding Knees in Multi-objective Optimization , 2004, PPSN.
[26] Mikhail Posypkin,et al. Method of non-uniform coverages to solve the multicriteria optimization problems with guaranteed accuracy , 2014, Autom. Remote. Control..
[27] Kathrin Klamroth,et al. On the representation of the search region in multi-objective optimization , 2015, Eur. J. Oper. Res..
[28] C. Gerth,et al. Nonconvex separation theorems and some applications in vector optimization , 1990 .
[29] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .