Predictive sorting algorithm for modular multilevel converters minimizing the spread in the submodule capacitor voltages

The modular multilevel converter is a suitable topology for bidirectional ac-dc conversion in high-voltage high-power applications. By connecting submodule circuits in series, a high-voltage waveform with excellent harmonic performance can be achieved with a very high efficiency and low switching frequency. The balancing of the capacitor voltages will, however, become increasingly difficult as the switching frequency is reduced. Although the capacitor voltages can be kept balanced over time even at the fundamental switching frequency, the spread and thus also the peak variation in the capacitor voltages will typically increase at lower switching frequencies. This paper presents a capacitor voltage balancing strategy which aims to combine a low switching frequency with a low capacitor voltage ripple. This is done by a predictive algorithm that calculates the amount of charge that must be stored in the submodule capacitors during the following fundamental frequency period. The converter is then controlled in such a way that the stored charge in the submodule capacitors is evenly distributed among all the submodules when the capacitor voltages reach their maximum values. In this way, it is possible to limit the peak voltage in the capacitor at switching frequencies as low as 2-3 times the fundamental frequency. The capacitor voltage balancing strategy is first validated by simulation results at 110 Hz switching frequency. It is observed that when the proposed method is used, the capacitor voltage ripple is 35% lower compared to the case when a conventional sorting algorithm is used. The capacitor voltage balancing strategy is also validated experimentally at 130 Hz switching frequency. The experimental results show that it is possible to combine the proposed method with previously presented circulating-current control methods.

[1]  Kai Zhang,et al.  An improved control system for modular multilevel converters featuring new modulation strategy and voltage balancing control , 2013, 2013 IEEE Energy Conversion Congress and Exposition.

[2]  S. Allebrod,et al.  New transformerless, scalable Modular Multilevel Converters for HVDC-transmission , 2008, 2008 IEEE Power Electronics Specialists Conference.

[3]  Rainer Marquardt,et al.  An innovative modular multilevel converter topology suitable for a wide power range , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[4]  Staffan Norrga,et al.  A New Modulation Method for the Modular Multilevel Converter Allowing Fundamental Switching Frequency , 2012 .

[5]  Staffan Norrga,et al.  Circulating current control in modular multilevel converters with fundamental switching frequency , 2012, Proceedings of The 7th International Power Electronics and Motion Control Conference.

[6]  Staffan Norrga,et al.  Capacitor voltage ripple shaping in modular multilevel converters allowing for operating region extension , 2011, IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society.

[7]  Lennart Harnefors,et al.  VSC-HVDC Transmission with Cascaded Two-Level Converters , 2010 .

[8]  H. Akagi,et al.  Control and Analysis of the Modular Multilevel Cascade Converter Based on Double-Star Chopper-Cells (MMCC-DSCC) , 2011, IEEE Transactions on Power Electronics.

[9]  Rik W. De Doncker,et al.  Control of the Modular Multi-Level Converter for minimized cell capacitance , 2011, Proceedings of the 2011 14th European Conference on Power Electronics and Applications.

[10]  Makoto Hagiwara,et al.  A Medium-Voltage Motor Drive With a Modular Multilevel PWM Inverter , 2010, IEEE Transactions on Power Electronics.

[11]  Marcelo A. Pérez,et al.  Predictive Control of AC–AC Modular Multilevel Converters , 2012, IEEE Transactions on Industrial Electronics.

[12]  K. Ilves,et al.  Steady-State Analysis of Interaction Between Harmonic Components of Arm and Line Quantities of Modular Multilevel Converters , 2012, IEEE Transactions on Power Electronics.

[13]  Marc Hiller,et al.  A new highly modular medium voltage converter topology for industrial drive applications , 2009, 2009 13th European Conference on Power Electronics and Applications.

[14]  K. Ilves,et al.  Open-Loop Control of Modular Multilevel Converters Using Estimation of Stored Energy , 2011, IEEE Transactions on Industry Applications.

[15]  Manfred Winkelnkemper,et al.  Low output frequency operation of the Modular Multi-Level Converter , 2010, 2010 IEEE Energy Conversion Congress and Exposition.

[16]  V.G. Agelidis,et al.  VSC-Based HVDC Power Transmission Systems: An Overview , 2009, IEEE Transactions on Power Electronics.

[17]  Reza Iravani,et al.  Dynamic performance of a modular multilevel back-to-back HVDC system , 2010, 2011 IEEE Power and Energy Society General Meeting.

[18]  Zheng Xu,et al.  Modeling and Control of a Modular Multilevel Converter-Based HVDC System Under Unbalanced Grid Conditions , 2012, IEEE Transactions on Power Electronics.