Maximum principles, Liouville theorem and symmetry results for the fractional $g-$Laplacian

We study different maximum principles for non-local non-linear operators with non-standard growth that arise naturally in the context of fractional Orlicz-Sobolev spaces and whose most notable representative is the fractional $g-$Laplacian: \[ (-\Delta_g)^su(x):=\textrm{p.v.}\int_{\mathbb{R}^n}g\left(\frac{u(x)-u(y)}{|x-y|^s}\right)\frac{dy}{|x-y|^{n+s}}, \] being $g$ the derivative of a Young function. We further derive qualitative properties of solutions such as a Liouville type theorem and symmetry results and present several possible extensions and some interesting open questions. These are the first results of this type proved in this setting.

[1]  Gary M. Lieberman,et al.  The natural generalizationj of the natural conditions of ladyzhenskaya and uralľtseva for elliptic equations , 1991 .

[2]  Wenxiong Chen,et al.  Indefinite fractional elliptic problem and Liouville theorems , 2014, 1404.1640.

[3]  A. Cianchi,et al.  Fractional Orlicz-Sobolev embeddings , 2020, 2001.05565.

[4]  Henri Berestycki,et al.  On the method of moving planes and the sliding method , 1991 .

[5]  L. Nirenberg,et al.  Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations , 1988 .

[6]  S. Bahrouni,et al.  Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems , 2019, Discrete & Continuous Dynamical Systems - A.

[7]  Zhanbing Bai,et al.  Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation , 2019, Appl. Math. Lett..

[8]  G. Mingione,et al.  Regularity for Double Phase Variational Problems , 2015 .

[9]  Bashir Ahmad,et al.  Radial symmetry of solution for fractional p−Laplacian system , 2020 .

[10]  F. Smithies,et al.  Convex Functions and Orlicz Spaces , 1962, The Mathematical Gazette.

[11]  Julián Fernández Bonder,et al.  A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians , 2018, Revista Matemática Complutense.

[12]  A. Salort Eigenvalues and minimizers for a non-standard growth non-local operator , 2018, Journal of Differential Equations.

[13]  Lihong Zhang,et al.  Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity , 2020, Appl. Math. Lett..

[14]  A. Salort,et al.  A Pólya–Szegö principle for general fractional Orlicz–Sobolev spaces , 2020 .

[15]  L. Slavíková,et al.  On the Limit as $$s\rightarrow 0^+$$ of Fractional Orlicz–Sobolev Spaces , 2020 .

[16]  Ariel Salort,et al.  Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces , 2020, ESAIM: Control, Optimisation and Calculus of Variations.

[17]  Wenxiong Chen,et al.  A maximum principle on unbounded domains and a Liouville theorem for fractional p-harmonic functions. , 2019, 1905.09986.

[18]  Congming Li,et al.  The maximum principles for fractional Laplacian equations and their applications , 2017 .

[19]  Wenxiong Chen,et al.  The sliding methods for the fractional p-Laplacian , 2020 .

[20]  Fractional eigenvalues in Orlicz spaces with no $\Delta_2$ condition , 2020, 2005.01847.

[21]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[22]  A. Cianchi,et al.  On the limit as $s\to 0^+$ of fractional Orlicz-Sobolev spaces , 2020, 2002.05449.

[23]  A. Salort,et al.  Fractional order Orlicz-Sobolev spaces , 2017, Journal of Functional Analysis.

[24]  Wenxiong Chen,et al.  Maximum principles for the fractional p-Laplacian and symmetry of solutions , 2017, Advances in Mathematics.

[25]  A. Nazarov,et al.  Strong maximum principles for fractional Laplacians , 2016, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.