Maximum principles, Liouville theorem and symmetry results for the fractional $g-$Laplacian
暂无分享,去创建一个
[1] Gary M. Lieberman,et al. The natural generalizationj of the natural conditions of ladyzhenskaya and uralľtseva for elliptic equations , 1991 .
[2] Wenxiong Chen,et al. Indefinite fractional elliptic problem and Liouville theorems , 2014, 1404.1640.
[3] A. Cianchi,et al. Fractional Orlicz-Sobolev embeddings , 2020, 2001.05565.
[4] Henri Berestycki,et al. On the method of moving planes and the sliding method , 1991 .
[5] L. Nirenberg,et al. Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations , 1988 .
[6] S. Bahrouni,et al. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems , 2019, Discrete & Continuous Dynamical Systems - A.
[7] Zhanbing Bai,et al. Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation , 2019, Appl. Math. Lett..
[8] G. Mingione,et al. Regularity for Double Phase Variational Problems , 2015 .
[9] Bashir Ahmad,et al. Radial symmetry of solution for fractional p−Laplacian system , 2020 .
[10] F. Smithies,et al. Convex Functions and Orlicz Spaces , 1962, The Mathematical Gazette.
[11] Julián Fernández Bonder,et al. A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians , 2018, Revista Matemática Complutense.
[12] A. Salort. Eigenvalues and minimizers for a non-standard growth non-local operator , 2018, Journal of Differential Equations.
[13] Lihong Zhang,et al. Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity , 2020, Appl. Math. Lett..
[14] A. Salort,et al. A Pólya–Szegö principle for general fractional Orlicz–Sobolev spaces , 2020 .
[15] L. Slavíková,et al. On the Limit as $$s\rightarrow 0^+$$ of Fractional Orlicz–Sobolev Spaces , 2020 .
[16] Ariel Salort,et al. Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces , 2020, ESAIM: Control, Optimisation and Calculus of Variations.
[17] Wenxiong Chen,et al. A maximum principle on unbounded domains and a Liouville theorem for fractional p-harmonic functions. , 2019, 1905.09986.
[18] Congming Li,et al. The maximum principles for fractional Laplacian equations and their applications , 2017 .
[19] Wenxiong Chen,et al. The sliding methods for the fractional p-Laplacian , 2020 .
[20] Fractional eigenvalues in Orlicz spaces with no $\Delta_2$ condition , 2020, 2005.01847.
[21] B. Gidas,et al. Symmetry and related properties via the maximum principle , 1979 .
[22] A. Cianchi,et al. On the limit as $s\to 0^+$ of fractional Orlicz-Sobolev spaces , 2020, 2002.05449.
[23] A. Salort,et al. Fractional order Orlicz-Sobolev spaces , 2017, Journal of Functional Analysis.
[24] Wenxiong Chen,et al. Maximum principles for the fractional p-Laplacian and symmetry of solutions , 2017, Advances in Mathematics.
[25] A. Nazarov,et al. Strong maximum principles for fractional Laplacians , 2016, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.