Evolution, discovery, and interpretations of arthropod mushroom bodies.

Mushroom bodies are prominent neuropils found in annelids and in all arthropod groups except crustaceans. First explicitly identified in 1850, the mushroom bodies differ in size and complexity between taxa, as well as between different castes of a single species of social insect. These differences led some early biologists to suggest that the mushroom bodies endow an arthropod with intelligence or the ability to execute voluntary actions, as opposed to innate behaviors. Recent physiological studies and mutant analyses have led to divergent interpretations. One interpretation is that the mushroom bodies conditionally relay to higher protocerebral centers information about sensory stimuli and the context in which they occur. Another interpretation is that they play a central role in learning and memory. Anatomical studies suggest that arthropod mushroom bodies are predominately associated with olfactory pathways except in phylogenetically basal insects. The prominent olfactory input to the mushroom body calyces in more recent insect orders is an acquired character. An overview of the history of research on the mushroom bodies, as well as comparative and evolutionary considerations, provides a conceptual framework for discussing the roles of these neuropils.

[1]  A. Forel Les fourmis de la Suisse. Systématique, notices anatomiques et physiologiques, architecture, distribution géographique, nouvelles expériences et observations de moeurs , 1874 .

[2]  P. Brownell,et al.  The organization of the malleolar sensory system in the solpugid, Chanbria sp. , 1974, Tissue & cell.

[3]  Erich Buchner,et al.  [3H]2-Deoxyglucose mapping of odor-induced neuronal activity in the antennal lobes of Drosophila melanogaster , 1984, Brain Research.

[4]  J. Boeckh,et al.  Connections between the deutocerebrum and the protocerebrum, and neuroanatomy of several classes of deutocerebral projection neurons in the brain of male Periplaneta americana , 1993, The Journal of comparative neurology.

[5]  N. Strausfeld,et al.  Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana , 1997, The Journal of comparative neurology.

[6]  R. Muller,et al.  A Quarter of a Century of Place Cells , 1996, Neuron.

[7]  A Borst,et al.  Drosophila mushroom body mutants are deficient in olfactory learning. , 1985, Journal of neurogenetics.

[8]  Mitchell J. Weiss Neuronal connections and the function of the corpora pedunculata in the brain of the American cockroach, Periplaneta americana (L.) , 1974, Journal of morphology.

[9]  W. Harris,et al.  Conditioned behavior in Drosophila melanogaster. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Kambhampati A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Viallanes Etudes histologiques et organologiques sur les centres nerveux et les organes des sens des animaux articulés. , 1884 .

[12]  Franz Huber Auslösung von Bewegungsmustern durch elektrische Reizung des Oberschlundganglions bei Orthopteren (Saltatoria: Gryllidae, Acridiidae) , 1959 .

[13]  N. Strausfeld,et al.  The arthropod mushroom body: Its functional roles, evolutionary enigmas and mistaken identities , 1995 .

[14]  R. Elofsson,et al.  Comparative anatomy of the crustacean brain , 1987 .

[15]  F. Schürmann Common and special features of the nervous system of Onychophora: A comparison with Arthropoda, Annelida and some other invertebrates , 1995 .

[16]  Olaf Breidbach,et al.  The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach , 1995, Experientia Supplementum.

[17]  D. Vowles The Structure and Connexions of the Corpora Pedunculata in Bees and Ants , 1955 .

[18]  Ryuichi Okada,et al.  Modular structures in the mushroom body of the cockroach , 1997, Neuroscience Letters.

[19]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[20]  P. Mobbs Neural networks in the mushroom bodies of the honeybee , 1984 .

[21]  G. Olsen,et al.  Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. , 1992, Science.

[22]  A. Borst,et al.  γ‐aminobutyric acid receptor distribution in the mushroom bodies of a fly (Calliphora erythrocephala): a functional subdivision of Kenyon cells? , 1997, The Journal of comparative neurology.

[23]  J. Mauelshagen,et al.  Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. , 1993, Journal of neurophysiology.

[24]  P. Rakić,et al.  Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[25]  N. Frontali,et al.  Studies on the neuronal organization of cockroach corpora pedunculata , 1970 .

[26]  R. Menzel,et al.  Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha‐lobe , 1993, The Journal of comparative neurology.

[27]  P. Sherman,et al.  Kin recognition in animals , 1983 .

[28]  W. Gronenberg Anatomical and physiological properties of feedback neurons of the mushroom bodies in the bee brain. , 1987, Experimental biology.

[29]  R. Sandeman,et al.  Brain evolution in decapod crustacea , 1993 .

[30]  Nicholas J. Strausfeld,et al.  Neurobiology of Sensory Systems , 1989, Springer US.

[31]  Gilles Laurent,et al.  Olfactory processing: maps, time and codes , 1997, Current Opinion in Neurobiology.

[32]  F. Leydig Vom Bau des thierischen Körpers , 1864 .

[33]  R. Menzel,et al.  Localization of short‐term memory in the brain of the bee, Apis mellifera , 1980 .

[34]  G. Budd The morphology of Opabinia regalis and the reconstruction of the arthropod stem‐group , 1996 .

[35]  G. Laurent,et al.  Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies , 1996, Science.

[36]  H. B. Whittington The Lobopod Animal Aysheaia pedunculata Walcott, Middle Cambrian, Burgess Shale, British Columbia , 1978 .

[37]  J. Sepkoski,et al.  Insect diversity in the fossil record. , 1993, Science.

[38]  Michael P. Stryker,et al.  Origin of orientation tuning in the visual cortex , 1992, Current Opinion in Neurobiology.

[39]  Gerd Bicker Taurine-like immunoreactivity in photoreceptor cells and mushroom bodies: a comparison of the chemical architecture of insect nervous systems , 1991, Brain Research.

[40]  E. Kandel,et al.  Neuropeptides, adenylyl cyclase, and memory storage. , 1995, Science.

[41]  J. McAlpine Manual of Nearctic Diptera , 1981 .

[42]  S. Morris,et al.  Middle Cambrian Polychaetes from the Burgess Shale of British Columbia , 1979 .

[43]  F. C. Kenyon The Meaning and Structure of the So-Called "Mushroom Bodies" of the Hexapod Brain , 1896, The American Naturalist.

[44]  Freidrich-Wilhelm Schu¨rmann Synaptic contacts of association fibres in the brain of the bee , 1971 .

[45]  P. Callaerts,et al.  PAX-6 in development and evolution. , 1997, Annual review of neuroscience.

[46]  V. Alones,et al.  Anatomy and fine structure of neurons in the deutocerebral projection pathway of the crayfish olfactory system , 1992, The Journal of comparative neurology.

[47]  A. B. Gurney The Insects of Australia , 1971 .

[48]  Lucy Pearson The Corpora Pedunculata of Sphinx ligustri L. and Other Lepidoptera: An Anatomical Study , 1971 .

[49]  M Heisenberg,et al.  Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. , 1994, Science.

[50]  G. Robinson,et al.  Selective neuroanatomical plasticity and division of labour in the honeybee , 1993, Nature.

[51]  Richard S. Mann,et al.  Control of antennal versus leg development in Drosophila , 1998, Nature.

[52]  W. Kloot,et al.  COCOON CONSTRUCTION BY THE CECROPIA SILKWORM III. THE ALTERATION OF SPINNING BEHAVIOR BY CHEMICAL AND SURGICAL TECHNIQUES , 1954 .

[53]  K. Norberg,et al.  Catecholamine containing neurons in the cockroach brain. , 1966, Acta physiologica Scandinavica.

[54]  F. C. Kenyon The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda , 1896 .

[55]  Bertil Hanström Vergleichende Anatomie des Nervensystems der wirbellosen Tiere: unter Berücksichtigung seiner Funktion , 1929, Nature.

[56]  Ronald L. Davis,et al.  The cyclic AMP phosphodiesterase encoded by the drosophila dunce gene is concentrated in the mushroom body neuropil , 1991, Neuron.

[57]  M. Burrows Local circuits for the control of leg movements in an insect , 1992, Trends in Neurosciences.

[58]  J. Erber,et al.  FMRFamide-like immunoreactivity in the brain of the honeybee (Apis mellifera). A light- and electron microscopical study , 1990, Neuroscience.

[59]  M. J. Weiss Structural patterns in the corpora pedunculata of orthoptera: A reduced silver analysis , 1981, The Journal of comparative neurology.

[60]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[61]  Hölldobler,et al.  Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus , 1996, The Journal of experimental biology.

[62]  D. Yamamoto,et al.  The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. , 1997, Development.

[63]  D. Vowles,et al.  OLFACTORY LEARNING AND BRAIN LESIONS IN THE WOOD ANT (FORMICA RUFA). , 1964, Journal of comparative and physiological psychology.

[64]  M. Elphick,et al.  Nitric oxide synthesis in locust olfactory interneurones , 1995, The Journal of experimental biology.

[65]  D. Maynard Electrical Activity in the Cockroach Cerebrum , 1956, Nature.

[66]  D. Tautz,et al.  Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods , 1995, Nature.

[67]  M. Heisenberg Mutants of brain structure and function: what is the significance of the mushroom bodies for behavior? , 1980, Basic life sciences.

[68]  G. Laurent,et al.  Impaired odour discrimination on desynchronization of odour-encoding neural assemblies , 1997, Nature.

[69]  F. Schurmann Uber die Struktur der Pilzkorper des Insektengehirns. I. Synapsen im Pedunculus , 1970 .

[70]  C. Strambi,et al.  Neurogenesis in an adult insect brain and its hormonal control , 1994, Nature.

[71]  M. E. Power The antennal centers and their connections within the brain of Drosophila melanogaster , 1946, The Journal of comparative neurology.

[72]  G. Horridge,et al.  Structure and function in the nervous systems of invertebrates , 1965 .

[73]  J. Kukalová-Peck Fossil history and the evolution of Hexapod structures , 1991 .

[74]  W. Wheeler,et al.  ARTHROPOD PHYLOGENY: A COMBINED APPROACH , 1993, Cladistics : the international journal of the Willi Hennig Society.

[75]  G. Robinson,et al.  Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees. , 1995, Journal of neurobiology.

[76]  N. Strausfeld,et al.  The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. , 1998, Learning & memory.

[77]  Tim Tully,et al.  Associative Learning Disrupted by Impaired Gs Signaling in Drosophila Mushroom Bodies , 1996, Science.

[78]  Nicholas J. Strausfeld,et al.  Organizational principles of outputs from Dipteran brains , 1984 .

[79]  Nicholas J. Strausfeld,et al.  A new role for the insect mushroom bodies: place memory and motor control , 1993 .

[80]  F. Barth,et al.  Two visual systems in one brain: Neuropils serving the principal eyes of the spider Cupiennius salei , 1993, The Journal of comparative neurology.

[81]  C. Labandeira,et al.  Early Insect Diversification: Evidence from a Lower Devonian Bristletail from Québec , 1988, Science.

[82]  V. Braitenberg Is the cerebellar cortex a biological clock in the millisecond range? , 1967, Progress in brain research.

[83]  W. Gronenberg Physiological and anatomical properties of optical input-fibres to the mushroom body in the bee brain , 1986 .

[84]  N. Strausfeld,et al.  Subdivision of the drosophila mushroom bodies by enhancer-trap expression patterns , 1995, Neuron.

[85]  F. Barth,et al.  Two visual systems in one brain: Neuropils serving the secondary eyes of the spider Cupiennius salei , 1993, The Journal of comparative neurology.

[86]  Gordon M. Shepherd,et al.  The Olfactory Bulb , 1988 .

[87]  G. Laurent,et al.  Odorant-induced oscillations in the mushroom bodies of the locust , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  Ronald L. Davis Mushroom bodies and drosophila learning , 1993, Neuron.

[89]  W. H. Fahrenbach The brain of the horseshoe crab (Limulus polyphemus). III. Cellular and synaptic organization of the corpora pedunculata. , 1979, Tissue & cell.

[90]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[91]  Schürmann Fw,et al.  [On the functional anatomy of the corpora pedunculata in insects (author's transl)]. , 1974 .

[92]  Response properties of chemosensory peg sensilla on the pectines of scorpions , 1997, Journal of Comparative Physiology A.

[93]  V. Rodrigues,et al.  The Antennal Glomerulus as a Functional Unit of Odor Coding in Drosophila Melanogaster , 1989 .

[94]  N. Strausfeld Crustacean – Insect Relationships: The Use of Brain Characters to Derive Phylogeny amongst Segmented Invertebrates , 1998, Brain, Behavior and Evolution.

[95]  D. Briggs,et al.  A Middle Cambrian chelicerate from Mount Stephen, British Columbia , 1988 .

[96]  R. Elofsson,et al.  CENTRAL NERVOUS SYSTEM OF HUTCHINSONIELLA MACRACANTHA (CEPHALOCARIDA) , 1990 .