Single semi-contextual insertion-deletion systems

In this paper we consider the model of single insertion-deletion systems that at each step insert or delete a single symbol in a context-free manner (i.e. at any position in the word). The corresponding operation is performed if the word contains a set of permitting (that have to be present in the word) and/or forbidding (that must not be present in the word) strings of some size. The main result of this paper states that if forbidding strings of size 2 and permitting strings of size 1 are used then computational completeness can be achieved; moreover, checking for a single permitting symbol is sufficient. We also show that in the case of systems having rules with forbidding conditions only, all regular languages can be obtained. Finally, we show the computational non-completeness in the case of systems using rules with forbidding strings of size 1 (single symbols) and permitting strings of any finite size.

[1]  Sergey Verlan,et al.  Recent Developments on Insertion-Deletion Systems , 2010, Comput. Sci. J. Moldova.

[2]  G. Paun,et al.  DNA Computing , 1998, Texts in Theoretical Computer Science.

[3]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[4]  Kamala Krithivasan,et al.  On Characterizing Recursively Enumerable Languages by Insertion Grammars , 2005, Fundam. Informaticae.

[5]  Yurii Rogozhin,et al.  Further Results on Insertion-Deletion Systems with One-Sided Contexts , 2008, LATA.

[6]  Derick Wood,et al.  Theory of computation , 1986 .

[7]  Solomon Marcus,et al.  Contextual Grammars , 1969, COLING.

[8]  Henning Fernau,et al.  Generative Power of Matrix Insertion-Deletion Systems with Context-Free Insertion or Deletion , 2016, UCNC.

[9]  Gheorghe Paun,et al.  Representations and Characterizations of Languages in Chomsky Hierarchy by Means of Insertion-Deletion Systems , 2008, Int. J. Found. Comput. Sci..

[10]  Gheorghe Paun,et al.  DNA Computing: New Computing Paradigms , 1998 .

[11]  Mitra S. Ganewatta,et al.  Macromolecular-clustered facial amphiphilic antimicrobials , 2018, Nature Communications.

[12]  Henning Fernau,et al.  Investigations on the power of matrix insertion-deletion systems with small sizes , 2017, Natural Computing.

[13]  Onodera Kaoru A Note on Homomorphic Representation of Recursively Enumerable Languages with Insertion Grammars , 2003 .

[14]  Sergiu Ivanov,et al.  Universality and Computational Completeness of Controlled Leftist Insertion-Deletion Systems , 2017, Fundam. Informaticae.

[15]  Sergiu Ivanov,et al.  About One-Sided One-Symbol Insertion-Deletion P Systems , 2013, Int. Conf. on Membrane Computing.

[16]  Mark Daley,et al.  Regulated RNA rewriting: Modelling RNA editing with guided insertion , 2007, Theor. Comput. Sci..

[17]  Erzsébet Csuhaj-Varjú,et al.  A Pumping Lemma for Permitting Semi-Conditional Languages , 2019, Int. J. Found. Comput. Sci..

[18]  Ion Petre,et al.  Matrix insertion-deletion systems , 2010, Theor. Comput. Sci..

[19]  Frantisek Mráz,et al.  Restarting Automata , 1995, FCT.

[20]  Henning Fernau,et al.  On the Power of Generalized Forbidding Insertion-Deletion Systems , 2020, DCFS.

[21]  Gheorghe Paun,et al.  At the crossroads of DNA computing and formal languages: Characterizing recursively enumerable languages using insertion-deletion systems , 1997, DNA Based Computers.

[22]  Lakshmanan Kuppusamy,et al.  Matrix Insertion-Deletion Systems for Bio-Molecular Structures , 2011, ICDCIT.

[23]  Yurii Rogozhin,et al.  Computational power of insertion–deletion (P) systems with rules of size two , 2011, Natural Computing.

[24]  Igor Potapov,et al.  Insertion-Deletion Systems over Relational Words , 2016, RP.

[25]  Artiom Alhazov,et al.  P systems with minimal insertion and deletion , 2011, Theor. Comput. Sci..

[26]  Lila Kari,et al.  Contextual Insertions/Deletions and Computability , 1996, Inf. Comput..

[27]  Henning Fernau,et al.  Universal Matrix Insertion Grammars with Small Size , 2017, UCNC.

[28]  David Haussler,et al.  Insertion languages , 1983, Inf. Sci..

[29]  Takashi Yokomori,et al.  On the computational power of insertion-deletion systems , 2004, Natural Computing.

[30]  Yurii Rogozhin,et al.  Insertion-Deletion Systems with One-Sided Contexts , 2007, MCU.

[31]  Rajeev Motwani,et al.  On the decidability of accessibility problems (extended abstract) , 2000, STOC '00.

[32]  Sergey Verlan,et al.  On minimal context-free insertion-deletion systems , 2005, DCFS.

[33]  Lila Kari,et al.  On the weight of universal insertion grammars , 2008, Theor. Comput. Sci..

[34]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[35]  Sergiu Ivanov,et al.  Random Context and Semi-conditional Insertion-deletion Systems , 2011, Fundam. Informaticae.

[36]  Henning Fernau,et al.  Computational completeness of simple semi-conditional insertion–deletion systems of degree (2,1) , 2019, Natural Computing.

[37]  Henning Fernau,et al.  Computational Completeness of Simple Semi-conditional Insertion-Deletion Systems , 2018, UCNC.

[38]  Victor Mitrana,et al.  Solving NP-Complete Problems With Networks of Evolutionary Processors , 2001, IWANN.

[39]  Gheorghe Paun A Variant of Random Context Grammars: Semi-Conditional Grammars , 1985, Theor. Comput. Sci..

[40]  Gheorghe Paun,et al.  Context-free insertion-deletion systems , 2005, Theor. Comput. Sci..

[41]  Lila Kari,et al.  Deletion operations: closure properties , 1994 .

[42]  Rudolf Freund,et al.  Graph-Controlled Insertion-Deletion Systems , 2010, DCFS.

[43]  Mazhar Adli,et al.  The CRISPR tool kit for genome editing and beyond , 2018, Nature Communications.