Bias-Dependent Dynamics of Degradation and Recovery in Perovskite Solar Cells

[1]  J. L. Hansen,et al.  Sputter-Deposited Titanium Oxide Layers as Efficient Electron Selective Contacts in Organic Photovoltaic Devices , 2019, ACS Applied Energy Materials.

[2]  F. Krebs,et al.  Enhancing functionality of ZnO hole blocking layer in organic photovoltaics , 2012 .

[3]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[4]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[5]  Yani Chen,et al.  Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. , 2017, Chemical Society reviews.

[6]  Thomas Riedl,et al.  Overcoming the “Light‐Soaking” Issue in Inverted Organic Solar Cells by the Use of Al:ZnO Electron Extraction Layers , 2013 .

[7]  J. Yates,et al.  Light-induced charge separation in anatase TiO2 particles. , 2005, The journal of physical chemistry. B.

[8]  S. Shionoya,et al.  Electron Effective Mass of SnO 2 , 1965 .

[9]  Eugene A. Katz,et al.  Bias-dependent degradation of various solar cells: lessons for stability of perovskite photovoltaics , 2019, Energy & Environmental Science.

[10]  Essa A. Alharbi,et al.  Intrinsic and interfacial kinetics of perovskite solar cells under photo and bias-induced degradation and recovery , 2017 .

[11]  Y. Galagan,et al.  Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3 , 2020, Nano Energy.

[12]  L. Etgar,et al.  Bias‐Dependent Stability of Perovskite Solar Cells Studied Using Natural and Concentrated Sunlight , 2020, Solar RRL.

[13]  B. Patil,et al.  Photo-induced degradation mechanisms in 4P-NPD thin films , 2018, Organic Electronics.

[14]  H. Rubahn,et al.  Crystalline Molybdenum Oxide Layers as Efficient and Stable Hole Contacts in Organic Photovoltaic Devices , 2019, ACS Applied Energy Materials.

[15]  Anders Hagfeldt,et al.  A chain is as strong as its weakest link – Stability study of MAPbI3 under light and temperature , 2019, Materials Today.

[16]  Yulia Galagan,et al.  Dynamics of photoinduced degradation of perovskite photovoltaics: from reversible to irreversible processes , 2018 .

[17]  D. Głowienka,et al.  Numerical modeling of exciton impact in two crystalographic phases of the organo-lead halide perovskite (CH3NH3PbI3) solar cell , 2019, Semiconductor Science and Technology.

[18]  J. Bisquert,et al.  Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment , 2018 .

[19]  J. Bisquert,et al.  Dynamic Phenomena at Perovskite/Electron-Selective Contact Interface as Interpreted from Photovoltage Decays , 2016 .

[20]  Kai Zhu,et al.  Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures , 2020, Nature Energy.

[21]  T. Bein,et al.  Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithium‐Ion Batteries and Beyond , 2019, ChemSusChem.

[22]  F. Krebs,et al.  Electrical and Photo‐Induced Degradation of ZnO Layers in Organic Photovoltaics , 2011 .

[23]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .

[24]  Tejas S. Sherkar,et al.  Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions , 2017, ACS energy letters.

[25]  K. Prakash,et al.  Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution , 2016 .

[26]  Dan Oron,et al.  Self‐Healing Inside APbBr3 Halide Perovskite Crystals , 2018, Advances in Materials.

[27]  K. Gödel,et al.  Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells , 2016 .

[28]  Alexander Colsmann,et al.  Ferroelectric Properties of Perovskite Thin Films and Their Implications for Solar Energy Conversion , 2019, Advanced materials.

[29]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[30]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[31]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[32]  Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions , 2017, Scientific Reports.

[33]  A. Di Carlo,et al.  In situ observation of heat-induced degradation of perovskite solar cells , 2016, Nature Energy.

[34]  J. Parisi,et al.  Role of Oxygen Adsorption in Nanocrystalline ZnO Interfacial Layers for Polymer−Fullerene Bulk Heterojunction Solar Cells , 2014, 1904.10916.

[35]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[36]  K. Stevenson,et al.  Impact of charge transport layers on the photochemical stability of MAPbI3 in thin films and perovskite solar cells , 2019, Sustainable Energy & Fuels.

[37]  S. Tamulevičius,et al.  Plasmon-Organic Fiber Interactions in Diamond-Like Carbon Coated Nanostructured Gold Films , 2017 .

[38]  Dong Hoe Kim,et al.  Extrinsic ion migration in perovskite solar cells , 2017 .

[39]  K. Catchpole,et al.  Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. , 2017, Physical chemistry chemical physics : PCCP.

[40]  S. Muqthiar Ali,et al.  Evaluation of SnO2 for sunlight photocatalytic decontamination of water. , 2018, Journal of environmental management.

[41]  Zhengshan J. Yu,et al.  Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. , 2018, Optics express.

[42]  Oxygen vacancies confined in SnO2 nanoparticles for glorious photocatalytic activities from the UV, visible to near-infrared region , 2018 .

[43]  H. Rubahn,et al.  Photo-induced and electrical degradation of organic field-effect transistors , 2020 .

[44]  Y. Qi,et al.  Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis , 2016 .

[45]  Claudine Katan,et al.  Light-activated photocurrent degradation and self-healing in perovskite solar cells , 2016, Nature Communications.

[46]  Rafael S Sánchez,et al.  Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells , 2016 .

[47]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[48]  Sungmin Park,et al.  A [2,2]paracyclophane triarylamine-based hole-transporting material for high performance perovskite solar cells , 2015 .

[49]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[50]  M. Kumar,et al.  Changes in the Electrical Characteristics of Perovskite Solar Cells with Aging Time , 2020, Molecules.

[51]  S. Haque,et al.  Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells , 2017, Nature Communications.

[52]  Mansoo Choi,et al.  Pulsatile therapy for perovskite solar cells , 2020, Joule.

[53]  J. Bisquert,et al.  Light-Induced Space-Charge Accumulation Zone as Photovoltaic Mechanism in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.