Predicting movie ratings and recommender systems

5

[1]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[2]  Michiel C. van Wezel,et al.  Including Item Characteristics in the Probabilistic Latent Semantic Analysis Model for Collaborative Filtering , 2008, AI Commun..

[3]  Geoffrey J. Gordon,et al.  A Unified View of Matrix Factorization Models , 2008, ECML/PKDD.

[4]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[5]  Wei Chu,et al.  Stochastic Relational Models for Discriminative Link Prediction , 2006, NIPS.

[6]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[7]  J. J. Kelly A new interpretation of information rate , 1956 .

[8]  Rich Caruana,et al.  Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.

[9]  Yee Whye Teh,et al.  Variational Bayesian Approach to Movie Rating Prediction , 2007, KDD 2007.

[10]  David M. Pennock,et al.  Categories and Subject Descriptors , 2001 .

[11]  Robert A. Legenstein,et al.  Combining predictions for accurate recommender systems , 2010, KDD.

[12]  Frank Meyer,et al.  Recommender systems in industrial contexts , 2012, ArXiv.

[13]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[14]  Steffen Bickel,et al.  Discriminative learning for differing training and test distributions , 2007, ICML '07.

[15]  Michael I. Jordan,et al.  Mixed Membership Matrix Factorization , 2010, ICML.

[16]  Daniel Marcu,et al.  Domain Adaptation for Statistical Classifiers , 2006, J. Artif. Intell. Res..

[17]  Volker Tresp,et al.  An Introduction to Nonparametric Hierarchical Bayesian Modelling with a Focus on Multi-agent Learning , 2003, European Summer School on Multi-AgentControl.

[18]  Li Chen,et al.  RecSys'11 workshop on human decision making in recommender systems , 2011, RecSys '11.

[19]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[20]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[21]  Daniel Lemire,et al.  Slope One Predictors for Online Rating-Based Collaborative Filtering , 2007, SDM.

[22]  Tom Heskes,et al.  Task Clustering and Gating for Bayesian Multitask Learning , 2003, J. Mach. Learn. Res..

[23]  Michael Jahrer,et al.  Collaborative Filtering Ensemble for Ranking , 2012, KDD Cup.

[24]  Deepak Agarwal,et al.  fLDA: matrix factorization through latent dirichlet allocation , 2010, WSDM '10.

[25]  L. Carin,et al.  Nonparametric Bayesian matrix completion , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.

[26]  Andrei Z. Broder,et al.  Anatomy of the long tail: ordinary people with extraordinary tastes , 2010, WSDM '10.

[27]  StatisticsHarvard,et al.  Avoiding model selection in Bayesian social research , 1994 .

[28]  Yi Zhang,et al.  Efficient bayesian hierarchical user modeling for recommendation system , 2007, SIGIR.

[29]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[30]  Shou-De Lin,et al.  Novel Models and Ensemble Techniques to Discriminate Favorite Items from Unrated Ones for Personalized Music Recommendation , 2012, KDD Cup.

[31]  Patrick O. Perry,et al.  A Rotation Test to Verify Latent Structure , 2010, J. Mach. Learn. Res..

[32]  Bhaskar Mehta,et al.  Unsupervised strategies for shilling detection and robust collaborative filtering , 2009, User Modeling and User-Adapted Interaction.

[33]  Joseph A. Konstan,et al.  Understanding and improving automated collaborative filtering systems , 2000 .

[34]  Panagiotis Adamopoulos,et al.  On Unexpectedness in Recommender Systems: Or How to Expect the Unexpected , 2011, DiveRS@RecSys.

[35]  Yehuda Koren,et al.  Improved Neighborhood-based Collaborative Filtering , 2007 .

[36]  Matthew Brand,et al.  Fast Online SVD Revisions for Lightweight Recommender Systems , 2003, SDM.

[37]  Michael Jahrer,et al.  Collaborative Filtering Ensemble , 2012, KDD Cup.

[38]  Deepak Agarwal,et al.  Regression-based latent factor models , 2009, KDD.

[39]  Yihong Gong,et al.  Large-scale collaborative prediction using a nonparametric random effects model , 2009, ICML '09.

[40]  Fillia Makedon,et al.  Learning from Incomplete Ratings Using Non-negative Matrix Factorization , 2006, SDM.

[41]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[42]  Shinichi Nakajima,et al.  Analysis of Variational Bayesian Matrix Factorization , 2009, PAKDD.

[43]  H. Crichton-Miller Adaptation , 1926 .

[44]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[45]  John Riedl,et al.  Shilling recommender systems for fun and profit , 2004, WWW '04.

[46]  Hal Daumé,et al.  Frustratingly Easy Domain Adaptation , 2007, ACL.

[47]  Marius St,et al.  Rating systems with multiple factors , 2011 .

[48]  Fillia Makedon,et al.  Using singular value decomposition approximation for collaborative filtering , 2005, Seventh IEEE International Conference on E-Commerce Technology (CEC'05).

[49]  Steffen Bickel,et al.  Discriminative Learning Under Covariate Shift , 2009, J. Mach. Learn. Res..

[50]  Nathan Srebro,et al.  Learning with matrix factorizations , 2004 .

[51]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[52]  Filip Radlinski,et al.  A support vector method for optimizing average precision , 2007, SIGIR.

[53]  G. Takács Convex polyhedron learning and its applications , 2009 .

[54]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[55]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[56]  Licia Capra,et al.  Temporal diversity in recommender systems , 2010, SIGIR.

[57]  Cosma Rohilla Shalizi,et al.  Philosophy and the Practice of Bayesian Statistics in the Social Sciences , 2012 .

[58]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[59]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[60]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[61]  Yifan Hu,et al.  Putting recommendations on the map: visualizing clusters and relations , 2009, RecSys '09.

[62]  YoungOk Kwon,et al.  Computational techniques for more accurate and diverse recommendations. , 2011 .

[63]  Tapani Raiko,et al.  Tkk Reports in Information and Computer Science Practical Approaches to Principal Component Analysis in the Presence of Missing Values Tkk Reports in Information and Computer Science Practical Approaches to Principal Component Analysis in the Presence of Missing Values , 2022 .

[64]  Christopher M. Bishop,et al.  Bayesian PCA , 1998, NIPS.

[65]  Thomas Hofmann,et al.  Collaborative filtering via gaussian probabilistic latent semantic analysis , 2003, SIGIR.

[66]  Domonkos Tikk,et al.  Scalable Collaborative Filtering Approaches for Large Recommender Systems , 2009, J. Mach. Learn. Res..

[67]  Domonkos Tikk,et al.  Fast als-based matrix factorization for explicit and implicit feedback datasets , 2010, RecSys '10.

[68]  Zeeshan Syed,et al.  From netflix to heart attacks: collaborative filtering in medical datasets , 2010, IHI.

[69]  Dennis DeCoste,et al.  Collaborative prediction using ensembles of Maximum Margin Matrix Factorizations , 2006, ICML.

[70]  Russell Greiner,et al.  Does Wikipedia Information Help Netflix Predictions? , 2008, 2008 Seventh International Conference on Machine Learning and Applications.

[71]  Yong Yu,et al.  Feature-Based Matrix Factorization , 2011, ArXiv.

[72]  J. Pearl Causal inference in statistics: An overview , 2009 .

[73]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[74]  Hang Li,et al.  Hybrid Recommendation Models for Binary User Preference Prediction Problem , 2012, KDD Cup.

[75]  Yehuda Koren,et al.  The BellKor solution to the Netflix Prize , 2007 .

[76]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  G. Stewart Gauss, Statistics, and Gaussian Elimination , 1995 .

[78]  Ruslan Salakhutdinov,et al.  Collaborative Filtering in a Non-Uniform World: Learning with the Weighted Trace Norm , 2010, NIPS.

[79]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[80]  Dan Frankowski,et al.  Collaborative Filtering Recommender Systems , 2007, The Adaptive Web.

[81]  H. Shimodaira,et al.  Improving predictive inference under covariate shift by weighting the log-likelihood function , 2000 .

[82]  Shou-De Lin,et al.  A Linear Ensemble of Individual and Blended Models for Music Rating Prediction , 2012, KDD Cup.

[83]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[84]  Hans-Peter Kriegel,et al.  Collaborative ordinal regression , 2006, ICML.

[85]  Max Welling,et al.  Multi-HDP: A Non Parametric Bayesian Model for Tensor Factorization , 2008, AAAI.

[86]  Jinlong Wu Binomial Matrix Factorization for Discrete Collaborative Filtering , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[87]  A. Palczewski Portfolio optimization - a practical approach , 2008 .

[88]  Volker Tresp,et al.  A nonparametric hierarchical bayesian framework for information filtering , 2004, SIGIR '04.

[89]  William Nick Street,et al.  Collaborative filtering via euclidean embedding , 2010, RecSys '10.

[90]  Yi-Cheng Zhang,et al.  Solving the apparent diversity-accuracy dilemma of recommender systems , 2008, Proceedings of the National Academy of Sciences.

[91]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[92]  Harald Steck,et al.  Training and testing of recommender systems on data missing not at random , 2010, KDD.

[93]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[94]  Thore Graepel,et al.  WWW 2009 MADRID! Track: Data Mining / Session: Statistical Methods Matchbox: Large Scale Online Bayesian Recommendations , 2022 .

[95]  Max Welling,et al.  Bayesian Matrix Factorization with Side Information and Dirichlet Process Mixtures , 2010, AAAI.

[96]  Bradley N. Miller,et al.  MovieLens unplugged: experiences with an occasionally connected recommender system , 2003, IUI '03.

[97]  Tom Minka,et al.  TrueSkillTM: A Bayesian Skill Rating System , 2006, NIPS.

[98]  Anton Schwaighofer,et al.  Learning Gaussian Process Kernels via Hierarchical Bayes , 2004, NIPS.

[99]  Zaïd Harchaoui,et al.  A Machine Learning Approach to Conjoint Analysis , 2004, NIPS.

[100]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[101]  R. Brent Algorithms for finding zeros and extrema of functions without calculating derivatives , 1971 .

[102]  Gavin Potter Putting the collaborator back into collaborative filtering , 2008, NETFLIX '08.

[103]  Julie Steele,et al.  Beautiful Visualization - Looking at Data Through the Eyes of Experts , 2010, Beautiful Visualization.

[104]  Gil Chamiel Utilising structured information for the representation and elicitation of user preferences , 2011 .

[105]  Jiazhong Nie,et al.  Technical Report : Probabilistic Latent Relational Model for Integrating Heterogeneous Information for Recommendation , 2010 .

[106]  R. Lathe Phd by thesis , 1988, Nature.

[107]  Julian J. Faraway,et al.  Extending the Linear Model with R , 2004 .

[108]  Carolo Friederico Gauss Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium , 2014 .

[109]  Josep Lluís de la Rosa i Esteva,et al.  A Taxonomy of Recommender Agents on the Internet , 2003, Artificial Intelligence Review.

[110]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[111]  Robert Legenstein,et al.  Improved neighborhood-based algorithms for large-scale recommender systems , 2008, NETFLIX '08.

[112]  Qing Yang,et al.  Time-Dependent Models in Collaborative Filtering Based Recommender System , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[113]  Ian Porteous,et al.  Networks of mixture blocks for non parametric bayesian models with applications , 2010 .

[114]  Yi-Cheng Zhang,et al.  Heat conduction process on community networks as a recommendation model. , 2007, Physical review letters.

[115]  M. A. Clements Terence Tao , 1984 .

[116]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[117]  Klaus-Robert Müller,et al.  Covariate Shift Adaptation by Importance Weighted Cross Validation , 2007, J. Mach. Learn. Res..

[118]  Rocco A. Servedio,et al.  Restricted Boltzmann Machines are Hard to Approximately Evaluate or Simulate , 2010, ICML.

[119]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[120]  Julio Michael Stern,et al.  Bayesian evidence test for precise hypotheses , 2003 .

[121]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.

[122]  Ruslan Salakhutdinov,et al.  Learning Deep Generative Models , 2009 .

[123]  Amos Storkey,et al.  In Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics , 2001 .

[124]  William J. J. Roberts Application of a Gaussian, Missing-Data Model to Product Recommendation , 2010, IEEE Signal Processing Letters.

[125]  Rong Hu,et al.  A Study on User Perception of Personality-Based Recommender Systems , 2010, UMAP.

[126]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[127]  Vitaly Shmatikov,et al.  Robust De-anonymization of Large Sparse Datasets , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[128]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[129]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[130]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[131]  Domonkos Tikk,et al.  Enhancing matrix factorization through initialization for implicit feedback databases , 2012, CaRR '12.

[132]  Gerhard Friedrich,et al.  Recommender Systems - An Introduction , 2010 .

[133]  Thomas Hofmann,et al.  TrueSkill™: A Bayesian Skill Rating System , 2007 .

[134]  Yihong Gong,et al.  Fast nonparametric matrix factorization for large-scale collaborative filtering , 2009, SIGIR.

[135]  Volker Tresp,et al.  Robust multi-task learning with t-processes , 2007, ICML '07.

[136]  András A. Benczúr,et al.  Methods for large scale SVD with missing values , 2007 .

[137]  Stephen P. Boyd,et al.  Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices , 2003, Proceedings of the 2003 American Control Conference, 2003..

[138]  Genevera I. Allen,et al.  TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION. , 2009, The annals of applied statistics.

[139]  Tiejun Li,et al.  A modified fuzzy C-means algorithm for collaborative filtering , 2008, NETFLIX '08.

[140]  Nicolas Gillis,et al.  Low-Rank Matrix Approximation with Weights or Missing Data Is NP-Hard , 2010, SIAM J. Matrix Anal. Appl..

[141]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[142]  Shinichi Nakajima,et al.  Theoretical Analysis of Bayesian Matrix Factorization , 2011, J. Mach. Learn. Res..

[143]  Yehuda Koren,et al.  Lessons from the Netflix prize challenge , 2007, SKDD.

[144]  Tao Li,et al.  Recommendation model based on opinion diffusion , 2007, ArXiv.

[145]  Alexander J. Smola,et al.  Maximum Margin Matrix Factorization for Collaborative Ranking , 2007 .

[146]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[147]  Wolf-Tilo Balke,et al.  Extracting Features from Ratings: The Role of Factor Models , 2011, ArXiv.

[148]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[149]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[150]  Lawrence Carin,et al.  Multi-Task Learning for Classification with Dirichlet Process Priors , 2007, J. Mach. Learn. Res..

[151]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[152]  Shinichi Nakajima,et al.  Implicit Regularization in Variational Bayesian Matrix Factorization , 2010, ICML.

[153]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[154]  M. Wu,et al.  Collaborative Filtering via Ensembles of Matrix Factorizations , 2007, KDD 2007.

[155]  Gediminas Adomavicius,et al.  On the stability of recommendation algorithms , 2010, RecSys '10.

[156]  Neil D. Lawrence,et al.  Non-linear matrix factorization with Gaussian processes , 2009, ICML '09.

[157]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[158]  M. Glickman Parameter Estimation in Large Dynamic Paired Comparison Experiments , 1999 .

[159]  Wei Chu,et al.  Gaussian Process Models for Link Analysis and Transfer Learning , 2007, NIPS.

[160]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[161]  Ilya Mironov,et al.  Differentially private recommender systems: building privacy into the net , 2009, KDD.

[162]  Robert B. Litterman,et al.  Global Portfolio Optimization , 1992 .

[163]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[164]  Timothy J. Robinson,et al.  Linear Models With R , 2005, Technometrics.

[165]  Sean M. McNee,et al.  Improving recommendation lists through topic diversification , 2005, WWW '05.

[166]  Nava Tintarev,et al.  Rate it again: increasing recommendation accuracy by user re-rating , 2009, RecSys '09.

[167]  Shinichi Nakajima,et al.  On Bayesian PCA: Automatic Dimensionality Selection and Analytic Solution , 2011, ICML.

[168]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.

[169]  Kamal Ali,et al.  TiVo: making show recommendations using a distributed collaborative filtering architecture , 2004, KDD.

[170]  Yehuda Koren,et al.  Modeling relationships at multiple scales to improve accuracy of large recommender systems , 2007, KDD '07.

[171]  Yehuda Koren,et al.  The BellKor Solution to the Netflix Grand Prize , 2009 .

[172]  John F. Canny,et al.  Collaborative filtering with privacy via factor analysis , 2002, SIGIR '02.

[173]  Robert M. Bell,et al.  The BellKor 2008 Solution to the Netflix Prize , 2008 .

[174]  Tadeusz P. Dobrowiecki,et al.  Factorization-Based Large Scale Recommendation Algorithms , 2009 .

[175]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[176]  Bamdev Mishra,et al.  Low-rank optimization for distance matrix completion , 2011, IEEE Conference on Decision and Control and European Control Conference.

[177]  Domonkos Tikk,et al.  Investigation of Various Matrix Factorization Methods for Large Recommender Systems , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[178]  Erik Brynjolfsson,et al.  Goodbye Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Concentration of Product Sales , 2011, Manag. Sci..

[179]  Andriy Mnih,et al.  Learning Distributed Representations for Statistical Language Modelling and Collaborative Filtering , 2010 .

[180]  Michael H. Pryor,et al.  The Effects of Singular Value Decomposition on Collaborative Filtering , 1998 .

[181]  Joseph Sill,et al.  Feature-Weighted Linear Stacking , 2009, ArXiv.

[182]  Thomas Hofmann,et al.  Learning from Dyadic Data , 1998, NIPS.

[183]  Dennis M. Wilkinson,et al.  Large-Scale Parallel Collaborative Filtering for the Netflix Prize , 2008, AAIM.

[184]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[185]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[186]  Domonkos Tikk,et al.  Matrix factorization and neighbor based algorithms for the netflix prize problem , 2008, RecSys '08.

[187]  Fabio Crestani,et al.  Bayesian latent variable models for collaborative item rating prediction , 2011, CIKM '11.

[188]  Yehuda Koren,et al.  Factor in the neighbors: Scalable and accurate collaborative filtering , 2010, TKDD.

[189]  Martin Jaggi,et al.  A Simple Algorithm for Nuclear Norm Regularized Problems , 2010, ICML.

[190]  Shinichi Nakajima,et al.  Global Analytic Solution for Variational Bayesian Matrix Factorization , 2010, NIPS.

[191]  Charles M. Bishop Variational principal components , 1999 .

[192]  Yihong Gong,et al.  Stochastic Relational Models for Large-scale Dyadic Data using MCMC , 2008, NIPS.

[193]  Andreas Töscher The BigChaos Solution to the Netflix Prize 2008 , 2008 .

[194]  James Bennett,et al.  The Netflix Prize , 2007 .

[195]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[196]  Volker Tresp,et al.  Learning to learn and collaborative filtering , 2005, NIPS 2005.

[197]  Michael Jahrer,et al.  Collaborative Filtering Applied to Educational Data Mining , 2010 .

[198]  Yehuda Koren,et al.  The Yahoo! Music Dataset and KDD-Cup '11 , 2012, KDD Cup.

[199]  Andriy Mnih,et al.  Taxonomy-Informed Latent Factor Models for Implicit Feedback , 2012, KDD Cup.

[200]  Serguei Netessine,et al.  Is Tom Cruise Threatened ? Using Netflix Prize Data to Examine the Long Tail of Electronic Commerce , 2009 .

[201]  Benjamin M. Marlin,et al.  Missing Data Problems in Machine Learning , 2008 .

[202]  M. Kawanabe,et al.  Direct importance estimation for covariate shift adaptation , 2008 .

[203]  Daniel W. McMichael,et al.  Estimating Gaussian Mixture Models from Data with Missing Features , 1996, Fourth International Symposium on Signal Processing and Its Applications.

[204]  Xi Chen,et al.  Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization , 2010, SDM.

[205]  Juha Karhunen,et al.  Principal Component Analysis for Large Scale Problems with Lots of Missing Values , 2007, ECML.

[206]  Yehuda Koren,et al.  Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[207]  Cosma Rohilla Shalizi,et al.  Philosophy and the practice of Bayesian statistics. , 2010, The British journal of mathematical and statistical psychology.

[208]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[209]  Wei-Ying Ma,et al.  Collaborative Ensemble Learning: Combining Collaborative and Content-Based Information Filtering via Hierarchical Bayes , 2002, UAI.

[210]  Yehuda Koren,et al.  OrdRec: an ordinal model for predicting personalized item rating distributions , 2011, RecSys '11.

[211]  Céline Rouveirol,et al.  A case study in a recommender system based on purchase data , 2011, KDD.

[212]  Håvard Rue,et al.  Prediction and retrospective analysis of soccer matches in a league , 2000 .

[213]  L. V. D. Maaten,et al.  Preserving Local Structure in Gaussian Process Latent Variable Models , 2009 .

[214]  Lior Rokach,et al.  Recommender Systems Handbook , 2010 .

[215]  Benjamin M. Marlin,et al.  Collaborative Filtering: A Machine Learning Perspective , 2004 .

[216]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[217]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[218]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[219]  Arindam Banerjee,et al.  Generalized Probabilistic Matrix Factorizations for Collaborative Filtering , 2010, 2010 IEEE International Conference on Data Mining.

[220]  HE Ixtroductiont,et al.  The Bell System Technical Journal , 2022 .

[221]  Vipin Kumar UNDERSTANDING COMPLEX DATASETS: DATA MINING WITH MATRIX DECOMPOSITIONS , 2006 .

[222]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[223]  Richard S. Zemel,et al.  Collaborative prediction and ranking with non-random missing data , 2009, RecSys '09.

[224]  Anton Schwaighofer,et al.  Learning Gaussian processes from multiple tasks , 2005, ICML.

[225]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[226]  Michel Verleysen,et al.  Collaborative Filtering with interlaced Generalized Linear Models , 2008, ESANN.