Does feature similarity facilitate attentional selection?

[1]  M. Husain,et al.  Psychology of attention , 2012 .

[2]  Alexander Pastukhov,et al.  Visual attention is a single, integrated resource , 2009, Vision Research.

[3]  Steven A. Hillyard,et al.  Attention Facilitates Multiple Stimulus Features in Parallel in Human Visual Cortex , 2008, Current Biology.

[4]  Stefan Treue,et al.  Visual attention: of features and transparent surfaces , 2007, Trends in Cognitive Sciences.

[5]  G. Boynton,et al.  Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation , 2007, Neuron.

[6]  Marisa Carrasco,et al.  Feature-Based Attention Modulates Orientation-Selective Responses in Human Visual Cortex , 2007, Neuron.

[7]  Winrich A. Freiwald,et al.  Attention to Surfaces Modulates Motion Processing in Extrastriate Area MT , 2007, Neuron.

[8]  Ohad Ben-Shahar,et al.  Attention, segregation, and textons: Bridging the gap between object-based attention and texton-based segregation , 2007, Vision Research.

[9]  S A Hillyard,et al.  Feature-selective attention enhances color signals in early visual areas of the human brain , 2006, Proceedings of the National Academy of Sciences.

[10]  G. Boynton,et al.  Effects of feature-based attention on the motion aftereffect at remote locations , 2006, Vision Research.

[11]  John H. R. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[12]  D. Melcher,et al.  Implicit Attentional Selection of Bound Visual Features , 2005, Neuron.

[13]  Naomi M. Kenner,et al.  How fast can you change your mind? The speed of top-down guidance in visual search , 2004, Vision Research.

[14]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[15]  P. H. Schiller,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[16]  H. J. Muller,et al.  Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. , 2003, Journal of experimental psychology. Human perception and performance.

[17]  J-M Hopf,et al.  Dynamics of feature binding during object-selective attention , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Jacob Feldman,et al.  Visual comparisons within and between object parts: evidence for a single-part superiority effect , 2003, Vision Research.

[19]  J. Wolfe,et al.  Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. , 2003, Journal of experimental psychology. Human perception and performance.

[20]  G. Boynton,et al.  Global feature-based attention for motion and color , 2003, Vision Research.

[21]  G. Boynton,et al.  Global effects of feature-based attention in human visual cortex , 2002, Nature Neuroscience.

[22]  Valia Rodríguez,et al.  Dividing attention between form and motion during transparent surface perception. , 2002, Brain research. Cognitive brain research.

[23]  B. Scholl Objects and attention: the state of the art , 2001, Cognition.

[24]  Erik Blaser,et al.  Tracking an object through feature space , 2000, Nature.

[25]  C. Frith,et al.  Shifting baselines in attention research , 2000, Nature Reviews Neuroscience.

[26]  Holk Cruse,et al.  Adaptive behavior and intelligent systems without symbols and logic , 2000 .

[27]  Hans-Ulrich Bauer,et al.  Is There Parallel Binding of Distributed Objects , 2000 .

[28]  Nancy Kanwisher,et al.  fMRI evidence for objects as the units of attentional selection , 1999, Nature.

[29]  J. Maunsell,et al.  Effects of Attention on the Processing of Motion in Macaque Middle Temporal and Medial Superior Temporal Visual Cortical Areas , 1999, The Journal of Neuroscience.

[30]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[31]  Christof Koch,et al.  Attentional capacity is undifferentiated: Concurrent discrimination of form, color, and motion , 1999, Perception & psychophysics.

[32]  S. E. Watson,et al.  Object-based visual selective attention and perceptual organization , 1999, Perception & psychophysics.

[33]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[34]  A. Treisman,et al.  Perceiving visually presented objets: recognition, awareness, and modularity , 1998, Current Opinion in Neurobiology.

[35]  Mary J. Bravo,et al.  A global process in motion segregation , 1998, Vision Research.

[36]  M. Valdés-Sosa,et al.  Switching Attention without Shifting the Spotlight: Object-Based Attentional Modulation of Brain Potentials , 1998, Journal of Cognitive Neuroscience.

[37]  H. Pashler The Psychology of Attention , 1997 .

[38]  J. Duncan,et al.  Effects of similarity, difficulty, and nontarget presentation on the time course of visual attention , 1997, Perception & psychophysics.

[39]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[40]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[41]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[42]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[43]  J. Duncan Cooperating brain systems in selective perception and action. , 1996 .

[44]  James L. McClelland,et al.  Information integration in perception and communication , 1996 .

[45]  John Duncan,et al.  Objects and attributes in divided attention: Surface and boundary systems , 1996, Perception & psychophysics.

[46]  D. Burr,et al.  Two stages of visual processing for radial and circular motion , 1995, Nature.

[47]  H J Müller,et al.  Visual search for singleton feature targets within and across feature dimensions , 1995, Perception & psychophysics.

[48]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[49]  B. C. Motter,et al.  Neural correlates of feature selective memory and pop-out in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  B. Motter Neural correlates of attentive selection for color or luminance in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[52]  J. Duncan Similarity between concurrent visual discriminations: Dimensions and objects , 1993, Perception & psychophysics.

[53]  T. Freeman,et al.  Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure , 1992, Vision Research.

[54]  A. Treisman Features and Objects: The Fourteenth Bartlett Memorial Lecture , 1988, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[55]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[56]  J. Duncan Selective attention and the organization of visual information. , 1984, Journal of experimental psychology. General.

[57]  Walter Schneider,et al.  Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. , 1977 .

[58]  R. Shiffrin,et al.  Controlled and automatic human information processing: I , 1977 .

[59]  Walter Schneider,et al.  Controlled and Automatic Human Information Processing: 1. Detection, Search, and Attention. , 1977 .

[60]  Daniel G Bobrow,et al.  On data-limited and resource-limited processes , 1975, Cognitive Psychology.

[61]  C. L. M. The Psychology of Attention , 1890, Nature.