A Minkowski type duality mediating between state and predicate transformer semantics for a probabilistic nondeterministic language

Abstract In this paper we systematically derive a predicate transformer semantics from a direct semantics for a simple probabilistic-nondeterministic programming language L p . This goal is achieved by exhibiting the direct semantics as isomorphic to a continuation semantics from which the predicate transformer semantics can be read off immediately. This isomorphism allows one to identify nonempty convex compact saturated sets of valuations on the set S of states with certain “good” functionals from I S to I in a way similar to the one how H. Minkowski in 1903 related nonempty convex compact subsets of R n to what is nowadays called Minkowski functionals.

[1]  Annabelle McIver,et al.  Abstraction, Refinement and Proof for Probabilistic Systems , 2004, Monographs in Computer Science.

[2]  Klaus Keimel,et al.  Predicate transformers for extended probability and non-determinism , 2009, Math. Struct. Comput. Sci..

[3]  H. Minkowski Volumen und Oberfläche , 1903 .

[4]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[5]  Michael B. Smyth,et al.  Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[6]  A. A. Tolstonogov Support functions of convex compacta , 1977 .

[7]  Klaus Keimel,et al.  Explorer Semantic Domains for Combining Probability and NonDeterminism , 2009 .

[8]  Klaus Keimel,et al.  Continuous Lattices and Domains: The Scott Topology , 2003 .

[9]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[10]  M. Smyth Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[11]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[12]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[13]  Annabelle McIver,et al.  Demonic, angelic and unbounded probabilistic choices in sequential programs , 2001, Acta Informatica.

[14]  H. Minkowski Volumen und Oberfläche , 1903 .

[15]  Thomas Streicher,et al.  Domain-theoretic foundations of functional programming , 2006 .

[16]  Annabelle McIver,et al.  Partial correctness for probabilistic demonic programs , 2001, Theor. Comput. Sci..

[17]  Paul R. Halmos,et al.  Review: Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I: General theory , 1959 .

[18]  Nick Benton,et al.  Monads and Effects , 2000, APPSEM.

[19]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[20]  Reinhold Heckmann Power Domains and Second-Order Predicates , 1993, Theor. Comput. Sci..