Constructing evolutionary trees in the presence of polymorphic characters

Most phylogenetics literature and construction methods based upon characters pre- sume monomorphism (one state per character per species), yet polymorphism (multiple states per character per species) is well documented in both biology and historical linguistics. In this paper we consider the problem of inferring evolutionary trees for polymorphic characters. We show ecient algorithms for the construction of perfect phylogenies from polymorphic data. These methods have been used to help construct the evolutionary tree proposed by Warnow, Ringe, and Taylor for the Indo-European family of languages and presented by invitation at the National Academy of Sciences in November 1995.

[1]  Sampath Kannan,et al.  Triangulating three-colored graphs , 1991, SODA '91.

[2]  Fred R. McMorris,et al.  Triangulating vertex colored graphs , 1994, SODA '93.

[3]  Dan Gusfield,et al.  Efficient algorithms for inferring evolutionary trees , 1991, Networks.

[4]  John E. Hopcroft,et al.  Complexity of Computer Computations , 1974, IFIP Congress.

[5]  Tandy J. Warnow,et al.  Reconstructing the evolutionary history of natural languages , 1996, SODA '96.

[6]  T. Warnow Mathematical approaches to comparative linguistics. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  David Fernández-Baca,et al.  A Polynomial-Time Algorithm for the Perfect Phylogeny Problem when the Number of Character States is Fixed , 1994 .

[8]  D. Sankoff,et al.  Locating the vertices of a Steiner tree in arbitrary space , 1975 .

[9]  David Sankoff,et al.  Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison , 1983 .

[10]  Donald J. ROSE,et al.  On simple characterizations of k-trees , 1974, Discret. Math..

[11]  Michael R. Fellows,et al.  Two Strikes Against Perfect Phylogeny , 1992, ICALP.

[12]  Mike Steel,et al.  Convex tree realizations of partitions , 1992 .

[13]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[14]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[15]  W. H. Day Computationally difficult parsimony problems in phylogenetic systematics , 1983 .

[16]  John J. Wiens,et al.  Polymorphic Characters in Phylogenetic Systematics , 1995 .

[17]  D. F. Roberts,et al.  The History and Geography of Human Genes , 1996 .

[18]  Andrzej Proskurowski,et al.  Separating subgraphs in k-trees: Cables and caterpillars , 1984, Discret. Math..

[19]  G. Estabrook,et al.  An idealized concept of the true cladistic character , 1975 .

[20]  Joseph Felsenstein,et al.  Alternative Methods of Phylogenetic Inference and their Interrelationship , 1979 .

[21]  Tandy Warnow,et al.  Constructing phylogenetic trees efficiently using compatibility criteria , 1993 .

[22]  Alejandro A. Schäffer,et al.  Triangulating Three-Colored Graphs in Linear Time and Linear Space , 1993, SIAM J. Discret. Math..

[23]  M. Steel The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .

[24]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[25]  Alberto Piazza,et al.  The History and Geography of Human Genes: Abridged paperback Edition , 1996 .

[26]  Walter J. Lequesne Further Studies Based on the Uniquely Derived Character Concept , 1972 .

[27]  W. J. Quesne,et al.  A Method of Selection of Characters in Numerical Taxonomy , 1969 .

[28]  Sampath Kannan,et al.  Triangulating 3-Colored Graphs , 1992, SIAM J. Discret. Math..

[29]  Sampath Kannan,et al.  A fast algorithm for the computation and enumeration of perfect phylogenies when the number of character states is fixed , 1995, SODA '95.

[30]  Ton Kloks,et al.  A Simple Linear Time Algorithm for Triangulating Three-Colored Graphs , 1993, J. Algorithms.

[31]  M. Nei Molecular Evolutionary Genetics , 1987 .

[32]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[33]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[34]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[35]  David Sankoff,et al.  COMPUTATIONAL COMPLEXITY OF INFERRING PHYLOGENIES BY COMPATIBILITY , 1986 .

[36]  Sampath Kannan,et al.  Inferring Evolutionary History from DNA Sequences , 1994, SIAM J. Comput..

[37]  Sampath Kannan,et al.  Inferring evolutionary history from DNA sequences , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[38]  David S. Johnson,et al.  The computational complexity of inferring rooted phylogenies by parsimony , 1986 .

[39]  Masatoshi Nei,et al.  Human Polymorphic Genes: World Distribution , 1988 .

[40]  G. Estabrook,et al.  Cladistic Methodology: A Discussion of the Theoretical Basis for the Induction of Evolutionary History , 1972 .

[41]  David Fernández-Baca,et al.  Simple Algorithms for Perfect Phylogeny and Triangulating Colored Graphs , 1996, Int. J. Found. Comput. Sci..