Electric birefringence of recombinant spectrin segments 14, 14-15, 14-16, and 14-17 from Drosophila alpha-spectrin.

[1]  A. Mikkelsen,et al.  Deconvolution can be used in electrooptic studies to correct for non-ideal electric excitation pulses only when the electric dipole moment of the studied molecules is predominantly induced. , 2000, Journal of biochemical and biophysical methods.

[2]  A. Mikkelsen,et al.  Transient electric birefringence of human erythroid spectrin dimers and tetramers at ionic strengths of 4 mm and 53 mm , 1999, European Biophysics Journal.

[3]  A. Mikkelsen,et al.  Electrooptic analysis of macromolecule dipole moments using asymmetric reversing electric pulses. , 1998, Biophysical chemistry.

[4]  K. Knudsen,et al.  Brownian dynamics simulation of needle-spring chains , 1998 .

[5]  N. Menhart,et al.  Peptides with More than One 106-amino Acid Sequence Motif Are Needed to Mimic the Structural Stability of Spectrin* , 1996, The Journal of Biological Chemistry.

[6]  Arne Mikkelsen,et al.  Brownian dynamics simulation of needle chains , 1996 .

[7]  D. Porschke Analysis of chemical and physical relaxation processes of polyelectrolytes by electric field pulse methods: A comparison of critical comments with facts , 1996 .

[8]  D. Branton,et al.  Self-association of spectrin's repeating segments. , 1996, Biochemistry.

[9]  A. Pastore,et al.  The spectrin repeat folds into a three‐helix bundle in solution , 1996, FEBS letters.

[10]  D. Speicher,et al.  Mapping the Human Erythrocyte -Spectrin Dimer Initiation Site Using Recombinant Peptides and Correlation of Its Phasing with the -Actinin Dimer Site (*) , 1996, The Journal of Biological Chemistry.

[11]  L. Fung,et al.  Erythrocyte spectrin maintains its segmental motions on oxidation: a spin-label EPR study. , 1996, Biophysical journal.

[12]  D. Branton,et al.  Spectrin: on the path from structure to function. , 1996, Current opinion in cell biology.

[13]  J. Antosiewicz,et al.  Computation of the dipole moments of proteins. , 1995, Biophysical journal.

[14]  K. Knudsen,et al.  Numerical analysis of the rotational relaxation time of spectrin segments and spectrin heterodimer in dilute aqueous solution , 1995 .

[15]  J. Antosiewicz,et al.  Brownian dynamics of the polarization of rodlike polyelectrolytes , 1994 .

[16]  M. Morris,et al.  A proton nuclear magnetic resonance study of the mobile regions of human erythroid spectrin. , 1994, Biophysical chemistry.

[17]  F G Diaz,et al.  HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules. , 1994, Biophysical journal.

[18]  D. Branton,et al.  Crystal structure of the repetitive segments of spectrin. , 1993, Science.

[19]  J. Antosiewicz,et al.  Brownian dynamics simulation of electrooptical transients for complex macrodipoles. , 1993 .

[20]  A. S. Benight,et al.  Dynamic light scattering investigations of human erythrocyte spectrin. , 1992, Biochemistry.

[21]  D. Branton,et al.  Phasing the conformational unit of spectrin. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Mikkelsen,et al.  Shapes and shape changes in vitro in normal red blood cells. , 1991, Biochimica et biophysica acta.

[23]  D. Porschke,et al.  An electric field jump apparatus with ns time resolution for electro‐optical measurements at physiological salt concentrations. , 1991 .

[24]  D. Dhermy The spectrin super-family. , 1991, Biology of the cell.

[25]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[26]  V. Bennett Spectrin: a structural mediator between diverse plasma membrane proteins and the cytoplasm. , 1990, Current opinion in cell biology.

[27]  W. Sawyer,et al.  Rotational dynamics of erythrocyte spectrin. , 1989, Biochimica et biophysica acta.

[28]  D. Branton,et al.  The molecular basis of erythrocyte shape. , 1986, Science.

[29]  A. Mikkelsen,et al.  Spectrin, human erythrocyte shapes, and mechanochemical properties. , 1986, Biophysical journal.

[30]  A. Mikkelsen,et al.  Human erythrocyte spectrin dimer intrinsic viscosity: temperature dependence and implications for the molecular basis of the erythrocyte membrane free energy. , 1985, Biochimica et biophysica acta.

[31]  V. Marchesi,et al.  Stabilizing infrastructure of cell membranes. , 1985, Annual review of cell biology.

[32]  José García de la Torre,et al.  Comparison of theories for the translational and rotational diffusion coefficients of rod‐like macromolecules. Application to short DNA fragments , 1984 .

[33]  F. Jung,et al.  The hematocrit-erythrocyte-disaggregation-apparatus (HEDA). , 1984, Biorheology. Supplement : the official journal of the International Society of Biorheology.

[34]  B. Roux,et al.  Differences in the electric birefringence of spectrin dimers and tetramers as shown by the fast reversing electric pulse method. , 1982, Biophysical chemistry.

[35]  B. Zimm,et al.  Monte Carlo approach to the analysis of the rotational diffusion of wormlike chains , 1981 .

[36]  A. Mikkelsen,et al.  Human spectrin. V. A comparative electro-optic study of heterotetramers and heterodimers. , 1981, Biochimica et biophysica acta.

[37]  D M Shotton,et al.  The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. , 1979, Journal of molecular biology.

[38]  William A. Wegene,et al.  Time‐dependent birefringence, linear dichroism, and optical rotation resulting from rigid‐body rotational diffusion , 1979 .

[39]  A. Elgsaeter Human spectrin. I. A classical light scattering study. , 1978, Biochimica et biophysica acta.

[40]  A. Mikkelsen,et al.  Human spectrin. II. An electro-optic study. , 1978, Biochimica et biophysica acta.

[41]  D. Porschke Cable temperature jump apparatus with improved sensitivity and time resolution , 1976 .

[42]  D. Branton,et al.  Intramembrane particle aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation. , 1976, Biochimica et biophysica acta.

[43]  C. Houssier,et al.  Electric dichroism and electric birefringence , 1973 .

[44]  G. W. Hoffman A Nanosecond Temperature‐Jump Apparatus , 1971 .