Modelling of phase transitions in granular flows

We present in this work a system for unidimensional granular flows first mentioned in a paper of A. Lefebvre–Lepot and B. Maury (2011), which captures the transitions between compressible and incompressible phases. This model exhibits in the incompressible regions some memory effects through an additional variable called adhesion potential . We derive this system from compressible Navier–Stokes equations with singular viscosities and pressure, the singular limit between the two systems can then be seen as an analogue of the low Mach number limit for fluid with pressure dependent viscosity. It answers in a sense to the problem of transition between suspension flows and immersed granular flows identified by B. Andreotti, Y. Forterre and O. Pouliquen (2011). We illustrate the singular limit by numerical simulations.

[1]  B. Perthame,et al.  The Hele–Shaw Asymptotics for Mechanical Models of Tumor Growth , 2013, Archive for Rational Mechanics and Analysis.

[2]  David G. Schaeffer,et al.  Instability in the evolution equations describing incompressible granular flow , 1987 .

[3]  Pierre Fabrie,et al.  Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles , 2006 .

[4]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[5]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[6]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[7]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[8]  Pierre Degond,et al.  MACH-NUMBER UNIFORM ASYMPTOTIC-PRESERVING GAUGE SCHEMES FOR COMPRESSIBLE FLOWS , 2007 .

[9]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[10]  Pierre Degond,et al.  An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..

[11]  Antoine Mellet,et al.  On the Barotropic Compressible Navier–Stokes Equations , 2007 .

[12]  Raphaèle Herbin,et al.  STAGGERED SCHEMES FOR ALL SPEED FLOWS , 2012 .

[13]  A. A. Amsden,et al.  A numerical fluid dynamics calculation method for all flow speeds , 1971 .

[14]  Laurent Boudin,et al.  A Solution with Bounded Expansion Rate to the Model of Viscous Pressureless Gases , 2000, SIAM J. Math. Anal..

[15]  Bertrand Maury,et al.  A GLUEY PARTICLE MODEL , 2007 .

[16]  Florent Berthelin,et al.  EXISTENCE AND WEAK STABILITY FOR A PRESSURELESS MODEL WITH UNILATERAL CONSTRAINT , 2002 .

[17]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[18]  Fabrice Deluzet,et al.  An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field , 2009, J. Comput. Phys..

[19]  Olivier Pouliquen,et al.  Granular Media: Between Fluid and Solid , 2013 .

[20]  Koottungal Revi Arun,et al.  An Asymptotic Preserving all Mach Number Scheme for the Euler Equations of Gas Dynamics , 2012 .

[21]  Bertrand Maury,et al.  Micro-Macro Modelling of an Array of Spheres Interacting Through Lubrication Forces , 2008, 0802.2671.

[22]  Pierre Degond,et al.  Numerical simulations of the Euler system with congestion constraint , 2010, J. Comput. Phys..

[23]  B. Maury,et al.  Pressureless Euler equations with maximal density constraint : a time-splitting scheme , 2015 .

[24]  Andrea L. Bertozzi,et al.  Dewetting films: bifurcations and concentrations , 2001 .