Modelling of phase transitions in granular flows
暂无分享,去创建一个
[1] B. Perthame,et al. The Hele–Shaw Asymptotics for Mechanical Models of Tumor Growth , 2013, Archive for Rational Mechanics and Analysis.
[2] David G. Schaeffer,et al. Instability in the evolution equations describing incompressible granular flow , 1987 .
[3] Pierre Fabrie,et al. Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles , 2006 .
[4] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[5] P. Degond,et al. All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.
[6] E. Turkel,et al. Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .
[7] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[8] Pierre Degond,et al. MACH-NUMBER UNIFORM ASYMPTOTIC-PRESERVING GAUGE SCHEMES FOR COMPRESSIBLE FLOWS , 2007 .
[9] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[10] Pierre Degond,et al. An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..
[11] Antoine Mellet,et al. On the Barotropic Compressible Navier–Stokes Equations , 2007 .
[12] Raphaèle Herbin,et al. STAGGERED SCHEMES FOR ALL SPEED FLOWS , 2012 .
[13] A. A. Amsden,et al. A numerical fluid dynamics calculation method for all flow speeds , 1971 .
[14] Laurent Boudin,et al. A Solution with Bounded Expansion Rate to the Model of Viscous Pressureless Gases , 2000, SIAM J. Math. Anal..
[15] Bertrand Maury,et al. A GLUEY PARTICLE MODEL , 2007 .
[16] Florent Berthelin,et al. EXISTENCE AND WEAK STABILITY FOR A PRESSURELESS MODEL WITH UNILATERAL CONSTRAINT , 2002 .
[17] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[18] Fabrice Deluzet,et al. An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field , 2009, J. Comput. Phys..
[19] Olivier Pouliquen,et al. Granular Media: Between Fluid and Solid , 2013 .
[20] Koottungal Revi Arun,et al. An Asymptotic Preserving all Mach Number Scheme for the Euler Equations of Gas Dynamics , 2012 .
[21] Bertrand Maury,et al. Micro-Macro Modelling of an Array of Spheres Interacting Through Lubrication Forces , 2008, 0802.2671.
[22] Pierre Degond,et al. Numerical simulations of the Euler system with congestion constraint , 2010, J. Comput. Phys..
[23] B. Maury,et al. Pressureless Euler equations with maximal density constraint : a time-splitting scheme , 2015 .
[24] Andrea L. Bertozzi,et al. Dewetting films: bifurcations and concentrations , 2001 .