Community Learning by Graph Approximation

Learning communities from a graph is an important problem in many domains. Different types of communities can be generalized as link-pattern based communities. In this paper, we propose a general model based on graph approximation to learn link-pattern based community structures from a graph. The model generalizes the traditional graph partitioning approaches and is applicable to learning various community structures. Under this model, we derive a family of algorithms which are flexible to learn various community structures and easy to incorporate the prior knowledge of the community structures. Experimental evaluation and theoretical analysis show the effectiveness and great potential of the proposed model and algorithms.

[1]  E. Xing,et al.  Mixed Membership Stochastic Block Models for Relational Data with Application to Protein-Protein Interactions , 2006 .

[2]  Jiawei Han,et al.  Mining scale-free networks using geodesic clustering , 2004, KDD.

[3]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[4]  Rajeev Motwani,et al.  Stratified Planning , 2009, IJCAI.

[5]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[6]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[7]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[9]  Curt Jones,et al.  A Heuristic for Reducing Fill-In in Sparse Matrix Factorization , 1993, PPSC.

[10]  Ruslan Salakhutdinov,et al.  Adaptive Overrelaxed Bound Optimization Methods , 2003, ICML.

[11]  Inderjit S. Dhillon,et al.  Generative model-based clustering of directional data , 2003, KDD '03.

[12]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[15]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[16]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[17]  Joydeep Ghosh,et al.  Cluster Ensembles A Knowledge Reuse Framework for Combining Partitionings , 2002, AAAI/IAAI.

[18]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[19]  John Scott Social Network Analysis , 1988 .

[20]  Tom A. B. Snijders,et al.  Markov Chain Monte Carlo Estimation of Exponential Random Graph Models , 2002, J. Soc. Struct..

[21]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[22]  Chris H. Q. Ding,et al.  Bipartite graph partitioning and data clustering , 2001, CIKM '01.

[23]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[24]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Philip S. Yu,et al.  Spectral clustering for multi-type relational data , 2006, ICML.

[26]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[27]  Inderjit S. Dhillon,et al.  A fast kernel-based multilevel algorithm for graph clustering , 2005, KDD '05.

[28]  M. M. Meyer,et al.  Statistical Analysis of Multiple Sociometric Relations. , 1985 .

[29]  I. Dhillon,et al.  A Unified View of Kernel k-means , Spectral Clustering and Graph Cuts , 2004 .

[30]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[31]  Masaru Kitsuregawa,et al.  Inferring web communities through relaxed cocitation and dense bipartite graphs , 2002 .

[32]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.