Complex pectin metabolism by gut bacteria reveals novel catalytic functions

[1]  R. Field,et al.  Synthesis of apiose-containing oligosaccharide fragments of the plant cell wall: fragments of rhamnogalacturonan-II side chains A and B, and apiogalacturonan. , 2011, Organic & biomolecular chemistry.

[2]  H. Gilbert,et al.  Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot). , 2014, Annals of botany.

[3]  B. Henrissat,et al.  Glycan complexity dictates microbial resource allocation in the large intestine , 2015, Nature Communications.

[4]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[5]  K. Ishikawa,et al.  Subsite Structure of Saccharomycopsis α-Amylase Secreted from Saccharomyces cerevisiae , 1991 .

[6]  Claire Dumon,et al.  Structural and biochemical evidence for a boat-like transition state in beta-mannosidases. , 2008, Nature chemical biology.

[7]  S. Withers,et al.  Substrate distortion by a beta-mannanase: snapshots of the Michaelis and covalent-intermediate complexes suggest a B(2,5) conformation for the transition state. , 2002, Angewandte Chemie.

[8]  Evan Bolton,et al.  Symbol Nomenclature for Graphical Representations of Glycans. , 2015, Glycobiology.

[9]  Fei Long,et al.  REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. , 2004, Acta crystallographica. Section D, Biological crystallography.

[10]  M. O’Neill,et al.  Structural characterization of red wine rhamnogalacturonan II. , 1996, Carbohydrate research.

[11]  C. Wissing,et al.  Isotopic evidence for dietary ecology of late Neandertals in North-Western Europe , 2016 .

[12]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[13]  S. Withers,et al.  Crystal structure of Thermotoga maritima alpha-L-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis. , 2004, The Journal of biological chemistry.

[14]  R. Field,et al.  Synthesis of a 2,3,4-triglycosylated rhamnoside fragment of rhamnogalacturonan-II side chain A using a late stage oxidation approach. , 2005, The Journal of organic chemistry.

[15]  Erich Bornberg-Bauer,et al.  Rapid similarity search of proteins using alignments of domain arrangements , 2014, Bioinform..

[16]  J. López-Roca,et al.  Polysaccharide composition of Monastrell red wines from four different Spanish terroirs: effect of wine-making techniques. , 2013, Journal of agricultural and food chemistry.

[17]  Nicholas K. Sauter,et al.  Diffraction-geometry refinement in the DIALS framework , 2016, Acta crystallographica. Section D, Structural biology.

[18]  H. Brumer,et al.  The Structure and Function of an Arabinan-specific α-1,2-Arabinofuranosidase Identified from Screening the Activities of Bacterial GH43 Glycoside Hydrolases* , 2011, The Journal of Biological Chemistry.

[19]  Serge X. Cohen,et al.  Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 , 2008, Nature Protocols.

[20]  C. Morvan,et al.  Rhamnogalacturonans I and II are pectic substrates for flax-cell methyltransferases , 1997 .

[21]  Kevin Cowtan,et al.  Fitting molecular fragments into electron density , 2007, Acta crystallographica. Section D, Biological crystallography.

[22]  K. Ishikawa,et al.  Subsite structure of Saccharomycopsis alpha-amylase secreted from Saccharomyces cerevisiae. , 1991, Journal of biochemistry.

[23]  G J Davies,et al.  The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. , 2000, Biochemistry.

[24]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[25]  C. Robinson,et al.  Structural basis for nutrient acquisition by dominant members of the human gut microbiota , 2017, Nature.

[26]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[27]  Temple F. Smith,et al.  G Protein Heterodimers: New Structures Propel New Questions , 1996, Cell.

[28]  P. Albersheim,et al.  Occurrence of the Primary Cell Wall Polysaccharide Rhamnogalacturonan II in Pteridophytes, Lycophytes, and Bryophytes. Implications for the Evolution of Vascular Plants1 , 2004, Plant Physiology.

[29]  Graeme Winter,et al.  xia2: an expert system for macromolecular crystallography data reduction , 2010 .

[30]  Vincent Lombard,et al.  Automatic prediction of polysaccharide utilization loci in Bacteroidetes species , 2015, Bioinform..

[31]  G. Strecker,et al.  The nematode Caenorhabditis elegans synthesizes unusual O-linked glycans: identification of glucose-substituted mucin-type O-glycans and short chondroitin-like oligosaccharides. , 2001, The Biochemical journal.

[32]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[33]  B. Henrissat,et al.  First Structural Insights into α-l-Arabinofuranosidases from the Two GH62 Glycoside Hydrolase Subfamilies* , 2014, The Journal of Biological Chemistry.

[34]  D. Nurizzo,et al.  Cellvibrio japonicus alpha-L-arabinanase 43A has a novel five-blade beta-propeller fold. , 2002, Nature structural biology.

[35]  B. Henrissat,et al.  The Structure of a Streptomyces avermitilis α-l-Rhamnosidase Reveals a Novel Carbohydrate-binding Module CBM67 within the Six-domain Arrangement* , 2013, The Journal of Biological Chemistry.

[36]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[37]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[38]  Spencer J. Williams,et al.  Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. , 2010, Nature chemical biology.

[39]  Tadashi Ishii,et al.  Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. , 2004, Annual review of plant biology.

[40]  R. Field,et al.  Synthesis of an apiose-containing disaccharide fragment of rhamnogalacturonan-II and some analogues. , 2004, Carbohydrate research.

[41]  Spencer J. Williams,et al.  Dissecting conformational contributions to glycosidase catalysis and inhibition , 2014, Current opinion in structural biology.

[42]  H. Mayer,et al.  Identification of 3-deoxy-lyxo-2-heptulosaric acid in the core region of lipopolysaccharides from Rhizobiaceae. , 1991, FEMS microbiology letters.

[43]  H. Brumer,et al.  A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes , 2014, Nature.

[44]  Kenji Yamamoto,et al.  Structural Basis of the Catalytic Reaction Mechanism of Novel 1,2-α-L-Fucosidase from Bifidobacterium bifidum* , 2007, Journal of Biological Chemistry.

[45]  J. Gordon,et al.  Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. , 2008, Structure.

[46]  Bernard Henrissat,et al.  Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts , 2011, PLoS biology.

[47]  H. Köfeler,et al.  Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. , 2013, The Plant journal : for cell and molecular biology.

[48]  K. Henrick,et al.  isolation and characterization of 3-C-carboxy-5-deoxy-L-xylose, a naturally occurring, branched-chain, acidic monosaccharide , 1983 .

[49]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[50]  J. Prestegard,et al.  Primary structure of the 2-O-methyl-alpha-L-fucose-containing side chain of the pectic polysaccharide, rhamnogalacturonan II. , 2003, Carbohydrate research.

[51]  Masahiro Wakao,et al.  Molecular Cloning and Characterization of a β-l-Arabinobiosidase in Bifidobacterium longum That Belongs to a Novel Glycoside Hydrolase Family* , 2010, The Journal of Biological Chemistry.

[52]  Andrew G. Watts,et al.  Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. , 2004, Structure.

[53]  B. G. Davis,et al.  Tetrazoles of manno- and rhamno-pyranoses: Contrasting inhibition of mannosidases by [4.3.0] but of rhamnosidase by [3.3.0] bicyclic tetrazoles , 1999 .

[54]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[55]  Wei Lang,et al.  Advancing glycomics: implementation strategies at the consortium for functional glycomics. , 2006, Glycobiology.

[56]  E. Martens,et al.  How glycan metabolism shapes the human gut microbiota , 2012, Nature Reviews Microbiology.

[57]  Eric C. Martens,et al.  Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism , 2015, Nature.