Optimal equitable symbol weight codes for power line communications

The use of multiple frequency shift keying modulation with permutation codes addresses the problem of permanent narrowband noise disturbance in a power line communications (PLC) system. Equitable symbol weight codes was recently demonstrated to optimize the performance against narrowband noise in a general coded modulation scheme. This paper establishes the first infinite family of optimal equitable symbol weight codes with code lengths greater than alphabet size and whose relative narrowband noise error-correcting capabilities do not diminish to zero as the length grows. These families of codes meet the Plotkin bound. The construction method introduced is combinatorial and reveals interesting interplay with an extension of the concept of generalized balanced tournament designs from combinatorial design theory.

[1]  Sophie Huczynska Equidistant frequency permutation arrays and related constant composition codes , 2010, Des. Codes Cryptogr..

[2]  Esther R. Lamken,et al.  The Existence of Doubly Resolvable (v, 3, 2) - BIBDs , 1995, J. Comb. Theory, Ser. A.

[3]  Charles J. Colbourn,et al.  On constant composition codes , 2006, Discret. Appl. Math..

[4]  Cunsheng Ding,et al.  Combinatorial constructions of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[5]  Bahram Honary,et al.  High-speed narrowband PLC in Smart Grid landscape — State-of-the-art , 2011, 2011 IEEE International Symposium on Power Line Communications and Its Applications.

[6]  Liu Jianming,et al.  Communication performance of broadband PLC technologies for smart grid , 2011, 2011 IEEE International Symposium on Power Line Communications and Its Applications.

[7]  Peter Frankl,et al.  On the Maximum Number of Permutations with Given Maximal or Minimal Distance , 1977, J. Comb. Theory, Ser. A.

[8]  Dacfey Dzung,et al.  Evolution of powerline communications for smart distribution: From ripple control to OFDM , 2011, 2011 IEEE International Symposium on Power Line Communications and Its Applications.

[9]  Liuqing Yang,et al.  SC-FDMA for uplink smart meter transmission over low voltage power lines , 2011, 2011 IEEE International Symposium on Power Line Communications and Its Applications.

[10]  Cunsheng Ding,et al.  Algebraic constructions of constant composition codes , 2005, IEEE Trans. Inf. Theory.

[11]  Yeow Meng Chee,et al.  Linear Size Optimal $q$-ary Constant-Weight Codes and Constant-Composition Codes , 2010, IEEE Transactions on Information Theory.

[12]  Torleiv Kløve,et al.  Permutation arrays for powerline communication and mutually orthogonal latin squares , 2004, IEEE Transactions on Information Theory.

[13]  Yeow Meng Chee,et al.  Generalized Balanced Tournament Designs with Block Size Four , 2013, Electron. J. Comb..

[14]  C. Colbourn,et al.  Mutually orthogonal latin squares (MOLS) , 2006 .

[15]  Esther R. Lamken Constructions for generalized balanced tournament designs , 1994, Discret. Math..

[16]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[17]  Ezio Biglieri,et al.  Coding and modulation for a horrible channel , 2003, IEEE Commun. Mag..

[18]  I. Blake,et al.  An Introduction to Algebraic and Combinatorial Coding Theory , 1976 .

[19]  Yeow Meng Chee,et al.  Importance of symbol equity in coded modulation for power line communications , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[20]  E. Lamken Generalized balanced tournament designs , 1990 .

[21]  Mischa Schwartz,et al.  Carrier-wave telephony over power lines- early history , 2007, 2007 IEEE Conference on the History of Electric Power.

[22]  Torleiv Kløve,et al.  Distance-Preserving and Distance-Increasing Mappings From Ternary Vectors to Permutations , 2008, IEEE Transactions on Information Theory.

[23]  Richard M. Wilson,et al.  Cyclotomy and difference families in elementary abelian groups , 1972 .

[24]  Cunsheng Ding,et al.  Combinatorial constructions of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[25]  Cunsheng Ding,et al.  A family of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[26]  Gennian Ge,et al.  Optimal Ternary Constant-Composition Codes of Weight Four and Distance Five , 2011, IEEE Transactions on Information Theory.

[27]  Sophie Huczynska Powerline communication and the 36 officers problem , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Charles J. Colbourn,et al.  Constructions for Permutation Codes in Powerline Communications , 2004, Des. Codes Cryptogr..

[29]  Cunsheng Ding,et al.  A Construction of Optimal Constant Composition Codes , 2006, Des. Codes Cryptogr..

[30]  Esther R. Lamken Existence results for generalized balanced tournament designs with block size 3 , 1993, Des. Codes Cryptogr..

[31]  A. J. Han Vinck,et al.  Coded Modulation for Power Line Communications , 2011, ArXiv.

[32]  Hao Shen,et al.  The PBD-Closure of Constant-Composition Codes , 2007, IEEE Transactions on Information Theory.

[33]  Scott A. Vanstone,et al.  Balanced tournament designs and related topics , 1989, Discret. Math..

[34]  Chengmin Wang,et al.  Generalized balanced tournament designs and related codes , 2008, Des. Codes Cryptogr..

[35]  A. Vinck,et al.  On Constant-Composition Codes Over , 2003 .

[36]  G. Mullen,et al.  Frequency permutation arrays , 2005, math/0511173.

[37]  Peter Dukes Coding with injections , 2012, Des. Codes Cryptogr..

[38]  Esther R. Lamken,et al.  The Existence of Partitioned Generalized Balanced Tournament Designs with Block Size 3 , 1997, Des. Codes Cryptogr..

[39]  Bahram Honary,et al.  Power line communications: state of the art and future trends , 2003, IEEE Commun. Mag..

[40]  J. N. Ridley,et al.  Constructing Coset Codes With Optimal Same-Symbol Weight for Detecting Narrowband Interference in $M$-FSK Systems , 2010, IEEE Transactions on Information Theory.

[41]  H.C. Ferreira,et al.  Reed-Solomon coding to enhance the reliability of M-FSK in a power line environment , 2005, International Symposium on Power Line Communications and Its Applications, 2005..