Verification of the Positive Definiteness of the Inertial Matrix of Manipulators Using Base Inertial Parameters

The computation of the inertial matrix of dynamic model for manipulator using some sets of base-parameter values may be not positive definite for some configurations. Such sets of base-parameter values are physically impossible. The result of the study on physical impossibility of the set of base-parameter values could be used to judge if a set of base-parameter values, which are obtained through parameter identification or other methods, is physically impossible or not and to modify the set of base-parameter values that was judged to be physically impossible. Hence, the result would directly contribute to model-based control of manipulators or motion simulation for manipulators. In this paper, a sufficient condition for the inertial matrix to be positive definite for each configuration of the manipulator is given by use of physical inertial parameters of the links composing the manipulator. By use of this condition and a set of “virtual parameters,” a scheme is given to judge if a set of base-parameter values determine the inertial matrix to be always positive definite or not.

[1]  Koichi Osuka,et al.  Parameter expressiop for modelling and inverse dynamics problems of manipulators , 1988, Adv. Robotics.

[2]  Wisama Khalil,et al.  Minimum operations and minimum parameters of the dynamic models of tree structure robots , 1987, IEEE Journal on Robotics and Automation.

[3]  Koji Yoshida,et al.  Base parameters for manipulators with a planar parallelogram link mechanism , 1995, Adv. Robotics.

[4]  Koichi Osuka,et al.  Parameter Expression for Modeling and Inverse Dynamics Problem of Manipulators , 1987 .

[5]  Fouad Bennis,et al.  Symbolic Calculation of the Base Inertial Parameters of Closed-Loop Robots , 1995, Int. J. Robotics Res..

[6]  J. Wittenburg,et al.  Dynamics of systems of rigid bodies , 1977 .

[7]  Georges Bastin,et al.  Identification of the barycentric parameters of robot manipulators from external measurements , 1992, Autom..

[8]  Hirokazu Mayeda,et al.  Base parameters of dynamic models for general open loop kinematic chains , 1991 .

[9]  Wisama Khalil,et al.  Identification of the minimum inertial parameters of robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[10]  Koichi Osuka,et al.  A New Identification Method for Serial Manipulator Arms , 1984 .

[11]  Yoshihiko Nakamura,et al.  Principal base parameters of open and closed kinematic chains , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[12]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[13]  Fouad Bennis,et al.  Comments on "Direct calculation of minimum set of inertial parameters of serial robots" , 1994, IEEE Trans. Robotics Autom..

[14]  Koji Yoshida,et al.  When is the Set of Base-Parameter Values Physically Impossible? , 1996 .

[15]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[16]  M. Gautier,et al.  Essential parameters of robots , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[17]  Koichi Osuka,et al.  Base parameters of manipulator dynamic models , 1990, IEEE Trans. Robotics Autom..

[18]  Pradeep Kumar Khosla,et al.  Real-time control and identification of direct-drive manipulators (robotics) , 1986 .