Design-Oriented Analysis for Miller Compensation and Its Application to Multistage Amplifier Design

A design-oriented analysis (DOA) method is presented, which lends sufficient insights into various Miller compensation schemes. The method predicts the nondominant poles of the Miller-compensated amplifiers in an intuitive manner, and it serves as a good supplement to the conventional analysis. The usage of DOA is verified by the various design examples given in this paper. Guided by DOA, a multistage amplifier capable of driving a large-capacitive load (<inline-formula> <tex-math notation="LaTeX">$C_{L}$ </tex-math></inline-formula>) with low power consumption is presented. This amplifier employs an active zero to extend its Miller loop bandwidth, thereby pushing the amplifier’s nondominant poles to high frequencies and achieving larger gain bandwidth (GBW). Fabricated in a 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS process, the amplifier achieves 1.18-MHz GBW and 59.6° phase margin when driving an 18-nF <inline-formula> <tex-math notation="LaTeX">$C_{L}$ </tex-math></inline-formula>, while consuming 69.6 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> from a 1.2-V supply. The design shows improved figures-of-merit compared with the prior state-of-the-art Miller-compensated multistage amplifiers.

[1]  Ka Nang Leung,et al.  Three-stage large capacitive load amplifier with damping-factor-control frequency compensation , 2000, IEEE Journal of Solid-State Circuits.

[2]  D.J. Allstot,et al.  A high performance low power CMOS channel filter , 1980, IEEE Journal of Solid-State Circuits.

[3]  Gaetano Palumbo,et al.  Design guidelines for reversed nested Miller compensation in three-stage amplifiers , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[4]  Man-Kay Law,et al.  A 0.016mm2 144μW three-stage amplifier capable of driving 1-to-15nF capacitive load with >0.95MHz GBW , 2012, 2012 IEEE International Solid-State Circuits Conference.

[5]  K.H. Lundberg,et al.  Internal and external op-amp compensation: a control-centric tutorial , 2004, Proceedings of the 2004 American Control Conference.

[6]  Gaetano Palumbo,et al.  Design methodology and advances in nested-Miller compensation , 2002 .

[7]  Wing-Hung Ki,et al.  A Cascode Miller-Compensated Three-Stage Amplifier With Local Impedance Attenuation for Optimized Complex-Pole Control , 2015, IEEE Journal of Solid-State Circuits.

[8]  Ligang Hou,et al.  Impedance Adapting Compensation for Low-Power Multistage Amplifiers , 2011, IEEE Journal of Solid-State Circuits.

[9]  G. Palumbo,et al.  A compensation strategy for two-stage CMOS opamps based on current buffer , 1997 .

[10]  Edgar Sánchez-Sinencio,et al.  Multistage Amplifier Topologies with Nested-Compensation , 1998 .

[11]  Hoi Lee,et al.  Active-feedback frequency-compensation technique for low-power multistage amplifiers , 2003, IEEE J. Solid State Circuits.

[12]  B.K. Ahuja,et al.  An improved frequency compensation technique for CMOS operational amplifiers , 1983, IEEE Journal of Solid-State Circuits.

[13]  Davide Marano,et al.  Improved Reversed Nested Miller Frequency Compensation Technique With Voltage Buffer and Resistor , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Gaetano Palumbo,et al.  Design Procedure for Two-Stage CMOS Transconductance Operational Amplifiers: A Tutorial , 2001 .

[15]  Hoi Lee,et al.  A dual-path bandwidth extension amplifier topology with dual-loop parallel compensation , 2003 .

[16]  Man-Kay Law,et al.  A 0.016-mm2 144-µW Three-Stage Amplifier Capable of Driving 1-to-15 nF Capacitive Load With > 0.95-MHz GBW , 2013, IEEE J. Solid State Circuits.

[17]  Johan H. Huijsing,et al.  Frequency Compensation Techniques for Low-Power Operational Amplifiers , 1995 .

[18]  Hoi Lee,et al.  Dual Active-Capacitive-Feedback Compensation for Low-Power Large-Capacitive-Load Three-Stage Amplifiers , 2011, IEEE Journal of Solid-State Circuits.

[19]  Pak Kwong Chan,et al.  Cross Feedforward Cascode Compensation for Low-Power Three-Stage Amplifier With Large Capacitive Load , 2012, IEEE Journal of Solid-State Circuits.

[20]  Gaetano Palumbo,et al.  Advances in Reversed Nested Miller Compensation , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Gaetano Palumbo,et al.  Design methodology of Miller frequency compensation with current buffer/amplifier , 2008, IET Circuits Devices Syst..

[22]  E. Sanchez-Sinencio,et al.  Single Miller capacitor frequency compensation technique for low-power multistage amplifiers , 2005, IEEE Journal of Solid-State Circuits.

[23]  W. Sansen,et al.  AC boosting compensation scheme for low-power multistage amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[24]  Gyu-Hyeong Cho,et al.  17.3 A 0.9V 6.3μW multistage amplifier driving 500pF capacitive load with 1.34MHz GBW , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[25]  Johan H. Huijsing,et al.  A 100-MHz 100-dB operational amplifier with multipath nested Miller compensation structure , 1992 .