Growth, conductivity, and vapor response properties of metal ion-carboxylate linked nanoparticle films.

Nanoparticles of metals (Au, Ag, Pd, alloys) in the size range 1-3 nm diameter can be stabilized against aggregation of the metal particles by coating the metal surface with a dense monolayer of ligands (thiolates). The stabilization makes it possible to analytically define the nanoparticle composition (for example, Au140(hexanethiolate)53, I) and to elaborate the chemical functionality of the protecting monolayer (for example, Au140(C6)35(MUA)18, II, where C6 = hexanethiolate and MUA = mercaptoundecanoic acid). Network polymer films (IIfilm) on interdigitated array electrodes can be prepared from II, based on cation coordination (i.e., Cu2+, Zn2+, Ag+, methyl viologen) by the carboxylates of MUA. The electronic conductivity of the IIfilm network polymer films occurs by electron hopping between the Au140 nanoparticle cores, and offers an avenue for investigation of metal-to-metal nanoparticle electron transfer chemistry. The report begins with a brief summary of what is known about metal nanoparticle electron transfer chemistry. The investigation goes on to assess factors that influence the dynamics of film formation as well as film conductivity, in the interest of better understanding the parameters affecting electron hopping rates in IIfilm network polymer films. Finally, sorption of organic vapors into IIfilm causes a decreased electronic conductivity and increased mass that can be assessed using quartz crystal microbalance measurements. The change in electronic conductivity can be exploited for the sensing of organic vapors.

[1]  W. Peter Wuelfing,et al.  Monolayer-Protected Clusters: Molecular Precursors to Metal Films , 2001 .

[2]  Stephen W. Feldberg,et al.  Quantized Capacitance Charging of Monolayer-Protected Au Clusters , 1998 .

[3]  Di Li,et al.  Self-assembly of 4-ferrocene thiophenol capped electroactive gold nanoparticles onto gold electrode , 2003 .

[4]  M. G. Warner,et al.  Ligand Exchange Reactions Yield Subnanometer, Thiol-Stabilized Gold Particles with Defined Optical Transitions , 2002 .

[5]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[6]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[7]  R. Murray,et al.  Solid State Electron Self-Exchange Dynamics in Mixed Valent Poly(vinylferrocene) Films , 1994 .

[8]  Emily K. Warmoth,et al.  Gateway Reactions to Diverse, Polyfunctional Monolayer-Protected Gold Clusters , 1998 .

[9]  S. Reed,et al.  Improved Synthesis of Small (dCORE ≈ 1.5 nm) Phosphine-Stabilized Gold Nanoparticles , 2000 .

[10]  E. Zellers,et al.  Dual-chemiresistor GC detector employing monolayer-protected metal nanocluster interfaces. , 2002, Analytical chemistry.

[11]  R. Murray,et al.  Electronic conductivity of solid-state, mixed-valent, monolayer-protected Au clusters , 2000 .

[12]  R. Murray,et al.  Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters , 2001 .

[13]  R. Murray,et al.  Electrochemical Quantized Capacitance Charging of Surface Ensembles of Gold Nanoparticles , 1999 .

[14]  R. Murray,et al.  Three-dimensional monolayers: Nanometer-sized electrodes of alkanethiolate-stabilized gold cluster molecules , 1997 .

[15]  U. Landman,et al.  Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies , 1996 .

[16]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[17]  R. Whetten,et al.  Properties of a Ubiquitous 29 kDa Au:SR Cluster Compound † , 2001 .

[18]  R. Murray,et al.  Controlled and Reversible Formation of Nanoparticle Aggregates and Films Using Cu2+−Carboxylate Chemistry , 2000 .

[19]  Paul Mulvaney,et al.  Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters , 2000 .

[20]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[21]  R. Murray,et al.  Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules , 1999 .

[22]  R. Murray,et al.  28 KDA ALKANETHIOLATE-PROTECTED AU CLUSTERS GIVE ANALOGOUS SOLUTION ELECTROCHEMISTRY AND STM COULOMB STAIRCASES , 1997 .

[23]  R. Murray,et al.  Using Electrons Stored on Quantized Capacitors in Electron Transfer Reactions , 1999 .

[24]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[25]  R. Murray,et al.  Voltammetry and electron-transfer dynamics in a molecular melt of a 1.2 nm metal quantum dot. , 2003, Journal of the American Chemical Society.

[26]  D. R. Daniel,et al.  Core-shell nanostructured nanoparticle films as chemically sensitive interfaces. , 2001, Analytical chemistry.

[27]  R. Murray,et al.  Electron hopping conductivity and vapor sensing properties of flexible network polymer films of metal nanoparticles. , 2002, Journal of the American Chemical Society.

[28]  Soler,et al.  Do thiols merely passivate gold nanoclusters? , 2000, Physical review letters.

[29]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[30]  Justin D. Debord,et al.  The monolayer thickness dependence of quantized double-layer capacitances of monolayer-protected gold clusters. , 1999, Analytical chemistry.

[31]  U. Landman,et al.  Electronic Structure of PassivatedAu38(SCH3)24Nanocrystal , 1999 .

[32]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[33]  R. Murray,et al.  Redox and fluorophore functionalization of water-soluble, Tiopronin- protected gold clusters , 1999 .

[34]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[35]  Rudolph A. Marcus,et al.  Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture) , 1993 .

[36]  R. Murray,et al.  The dynamics of electron self-exchange between nanoparticles. , 2001, Journal of the American Chemical Society.

[37]  R. Murray,et al.  Dynamics and extent of ligand exchange depend on electronic charge of metal nanoparticles. , 2002, Journal of the American Chemical Society.

[38]  Shuguang Zhang,et al.  Emerging biological materials through molecular self-assembly. , 2002, Biotechnology advances.

[39]  R. Murray,et al.  Electron Hopping through Films of Arenethiolate Monolayer-Protected Gold Clusters , 2002 .

[40]  R. Murray,et al.  ELECTRON HOPPING AND ELECTRONIC CONDUCTIVITY IN MONOLAYERS OF ALKANETHIOL-STABILIZED GOLD NANO-CLUSTERS AT THE AIR/WATER INTERFACE , 1997 .