Numerical solution to a linearized KdV equation on unbounded domain
暂无分享,去创建一个
[1] M.W.Kalinowski. Nonlinear Waves , 2016, 1611.10114.
[2] M. Ablowitz,et al. Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .
[3] J. Gibbon,et al. Solitons and Nonlinear Wave Equations , 1982 .
[4] Ping-Wah Li. On the numerical study of the KdV equation by the Semi-Implicit and Leap-frog Method , 1995 .
[5] N. SIAMJ.,et al. A NEW DUAL-PETROV–GALERKIN METHOD FOR THIRD AND HIGHER ODD-ORDER DIFFERENTIAL EQUATIONS: APPLICATION TO THE KDV EQUATION∗ , 2003 .
[6] Chunxiong Zheng,et al. Numerical simulation of a modified KdV equation on the whole real axis , 2006, Numerische Mathematik.
[7] A. S. Fokas,et al. The generalized Dirichlet‐to‐Neumann map for certain nonlinear evolution PDEs , 2005 .
[8] Matthias Ehrhardt,et al. Discrete transparent boundary conditions for the Schrödinger equation , 2001 .
[9] Leslie Greengard,et al. Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension , 2004 .
[10] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[11] Dheeraj Bhardwaj,et al. Numerical solution of the Korteweg-de Vries (KdV) equation , 1997 .
[12] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[13] R. Gorenflo,et al. Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.