On Optimal DAG Reversal
暂无分享,去创建一个
[1] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[2] Andreas Griewank,et al. Automatic Differentiation of Algorithms: From Simulation to Optimization , 2000, Springer New York.
[3] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[4] U. Naumann,et al. Intraprocedural Adjoint Code Generated by the Differentiation-Enabled NAGWare Fortran Compiler , 2006 .
[5] Patrick Heimbach,et al. An efficient exact adjoint of the parallel MIT General Circulation Model, generated via automatic differentiation , 2005, Future Gener. Comput. Syst..
[6] Andrea Walther,et al. Program reversal schedules for single and multi-processor machines , 1999 .
[7] Robert E. Tarjan,et al. The Pebbling Problem is Complete in Polynomial Space , 1980, SIAM J. Comput..
[8] Martin Berz,et al. Computational differentiation : techniques, applications, and tools , 1996 .
[9] Andreas Griewank,et al. New results on program reversals , 2000 .
[10] Uwe Naumann,et al. "To be recorded" analysis in reverse-mode automatic differentiation , 2005, Future Gener. Comput. Syst..
[11] Mauricio Araya-Polo,et al. The Adjoint Data-Flow Analyses: Formalization, Properties, and Applications , 2006 .
[12] Uwe Naumann,et al. Computing Adjoints with the NAGWare Fortran 95 Compiler , 2006 .
[13] Jean Utke,et al. Source Templates for the Automatic Generation of Adjoint Code Through Static Call Graph Reversal , 2005, International Conference on Computational Science.
[14] Andreas Griewank,et al. Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.
[15] Robert E. Tarjan,et al. The pebbling problem is complete in polynomial space , 1979, SIAM J. Comput..
[16] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[17] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[18] J. Utke,et al. OPTIMALITY-PRESERVING ELIMINATION OF LINEARITIES IN JACOBIAN ACCUMULATION , 2005 .
[19] Jean Utke,et al. Efficient reversal of the intraprocedural flow of control in adjoint computations , 2006, J. Syst. Softw..
[20] Thomas Kaminski,et al. Recipes for adjoint code construction , 1998, TOMS.
[21] Laurent Hascoët,et al. TAPENADE 2.1 user's guide , 2004 .