Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation

Abstract. We report the results of characterization of red blood cell (RBC) structure and its dynamics with nanometric sensitivity using transport of intensity equation microscopy (TIEM). Conventional transport of intensity technique requires three intensity images and hence is not suitable for studying real-time dynamics of live biological samples. However, assuming the sample to be homogeneous, phase retrieval using transport of intensity equation has been demonstrated with single defocused measurement with x-rays. We adopt this technique for quantitative phase light microscopy of homogenous cells like RBCs. The main merits of this technique are its simplicity, cost-effectiveness, and ease of implementation on a conventional microscope. The phase information can be easily merged with regular bright-field and fluorescence images to provide multidimensional (three-dimensional spatial and temporal) information without any extra complexity in the setup. The phase measurement from the TIEM has been characterized using polymeric microbeads and the noise stability of the system has been analyzed. We explore the structure and real-time dynamics of RBCs and the subdomain membrane fluctuations using this technique.

[1]  A G Peele,et al.  Phase imaging using a polychromatic x-ray laboratory source. , 2008, Optics express.

[2]  V. Hasselblad,et al.  Statistical and graphical evaluation of erythrocyte volume distributions. , 1987, The American journal of physiology.

[3]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[4]  Yang Song,et al.  Phase retrieval method for biological samples with absorption , 2013 .

[5]  Gabriel Popescu,et al.  Fourier phase microscopy for investigation of biological structures and dynamics. , 2004, Optics letters.

[6]  G. Truskey,et al.  Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry. , 2011, Journal of biomedical optics.

[7]  Minh N. Do,et al.  Halo-free Phase Contrast Microscopy , 2017, Scientific Reports.

[8]  V. Micó,et al.  Quantitative phase microscopy using defocusing by means of a spatial light modulator. , 2010, Optics express.

[9]  Gabriel Popescu,et al.  Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. , 2005, Journal of biomedical optics.

[10]  S. S. Gorthi,et al.  Phase imaging flow cytometry using a focus-stack collecting microscope. , 2012, Optics letters.

[11]  K. Nugent,et al.  Quantitative optical phase microscopy. , 1998, Optics letters.

[12]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[13]  E. Cuche,et al.  Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. , 1999, Applied optics.

[14]  S. Wilkins,et al.  Linear algorithms for phase retrieval in the Fresnel region , 2004 .

[15]  C. Fang-Yen,et al.  Tomographic phase microscopy , 2008, Nature Methods.

[16]  Tristan Barrett,et al.  Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes , 2009, Nature Medicine.

[17]  Mary Louise Turgeon,et al.  Comprar Clinical Hematology. Theory and Procedures 5th. Ed. | Mary Louise Turgeon | 9781608310760 | Lippincott Williams & Wilkins , 2011 .

[18]  A. Peele,et al.  Polychromatic X-ray tomography: direct quantitative phase reconstruction. , 2012, Optics express.

[19]  A. Barty,et al.  Quantitative phase‐amplitude microscopy. III. The effects of noise , 2004, Journal of microscopy.

[20]  R. Gazzinelli,et al.  Cell surface fluctuations studied with defocusing microscopy. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Gabriel Popescu,et al.  Observation of dynamic subdomains in red blood cells. , 2006, Journal of biomedical optics.

[22]  Peter Klages,et al.  Digital in-line holographic microscopy. , 2006, Applied optics.

[23]  H. Daido,et al.  Development of a two-color interferometer for observing wide range electron density profiles with a femtosecond time resolution , 2006 .

[24]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[25]  G. Barbastathis,et al.  Transport of intensity phase imaging in a volume holographic microscope. , 2010, Optics letters.

[26]  R. Gazzinelli,et al.  Defocusing microscopy , 2004, Microscopy research and technique.

[27]  L. Tian,et al.  Transport of Intensity phase-amplitude imaging with higher order intensity derivatives. , 2010, Optics express.

[28]  V. Tuchin,et al.  The refractive index of human hemoglobin in the visible range , 2011, Physics in medicine and biology.

[29]  A. Asundi,et al.  High-speed transport-of-intensity phase microscopy with an electrically tunable lens. , 2013, Optics express.

[30]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.

[31]  N. Streibl Phase imaging by the transport equation of intensity , 1984 .

[32]  O. N. Mesquita,et al.  Defocusing microscopy: An approach for red blood cell optics , 2006 .

[33]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .

[34]  Suliana Manley,et al.  Optical measurement of cell membrane tension. , 2006, Physical review letters.

[35]  Renu John,et al.  Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy. , 2016, Applied optics.

[36]  A. Asundi,et al.  Noninterferometric single-shot quantitative phase microscopy. , 2013, Optics letters.

[37]  G. Popescu Quantitative phase imaging of nanoscale cell structure and dynamics. , 2008, Methods in cell biology.

[38]  T. Weitkamp,et al.  ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. , 2011, Journal of synchrotron radiation.

[39]  Gabriel Popescu,et al.  Imaging red blood cell dynamics by quantitative phase microscopy. , 2008, Blood cells, molecules & diseases.

[40]  S. Wilkins,et al.  Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object , 2002, Journal of microscopy.

[41]  Renu John,et al.  Non-interferometric quantitative phase imaging of yeast cells , 2015, SPIE/OSJ Biophotonics Japan.

[42]  Kedar Khare,et al.  Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach , 2016, Journal of biomedical optics.

[43]  G. Popescu Quantitative Phase Imaging of Cells and Tissues , 2011 .

[44]  Laura Waller,et al.  Phase from chromatic aberrations. , 2010, Optics express.

[45]  H. Pham,et al.  Spectroscopic diffraction phase microscopy. , 2012, Optics letters.

[46]  Yongjin Sung,et al.  Quantitative dispersion microscopy , 2010, Biomedical optics express.

[47]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[48]  M. Anastasio,et al.  Transport of intensity and spectrum for partially coherent fields. , 2010, Optics letters.

[49]  Victoria J Allan,et al.  Light Microscopy Techniques for Live Cell Imaging , 2003, Science.

[50]  YongKeun Park,et al.  Real-time quantitative phase imaging with a spatial phase-shifting algorithm. , 2011, Optics letters.

[51]  John C. H. Spence,et al.  Experimental High-Resolution Electron Microscopy , 1980 .

[52]  Werner Jüptner,et al.  Digital recording and numerical reconstruction of holograms , 2002 .

[53]  K. Nugent,et al.  Noninterferometric phase imaging with partially coherent light , 1998 .

[54]  Jaeduck Jang,et al.  Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. , 2012, Optics express.

[55]  Differential Interference Contrast Microscopy , 1977 .

[56]  Michael S. Feld,et al.  Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells , 2010, BiOS.

[57]  Yizheng Zhu,et al.  Quantitative phase spectroscopy , 2012, Biomedical optics express.