Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains

In insects, acetylcholine (ACh) is the main neurotransmitter, and nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee, nAChRs are expressed in diverse structures including the primary olfactory centres of the brain, the antennal lobes (AL) and the mushroom bodies. Whole-cell, voltage-clamp recordings were used to characterize the nAChRs present on cultured AL cells from adult honeybee, Apis mellifera. In 90% of the cells, applications of ACh induced fast inward currents that desensitized slowly. The classical nicotinic agonists nicotine and imidacloprid elicited respectively 45 and 43% of the maximum ACh-induced currents. The ACh-elicited currents were blocked by nicotinic antagonists methyllycaconitine, dihydroxy-β-erythroidine and α-bungarotoxin. The nAChRs on adult AL cells are cation permeable channels. Our data indicate the existence of functional nAChRs on adult AL cells that differ from nAChRs on pupal Kenyon cells from mushroom bodies by their pharmacological profile and ionic permeability, suggesting that these receptors could be implicated in different functions.

[1]  Michele Zoli,et al.  Molecular and Physiological Diversity of Nicotinic Acetylcholine Receptors in the Midbrain Dopaminergic Nuclei , 2001, The Journal of Neuroscience.

[2]  G. Lenaers,et al.  Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera , 2003, Insect molecular biology.

[3]  E. Gundelfinger,et al.  Insect Nicotinic Acetylcholine Receptors: Genes, Structure, Physiological and Pharmacological Properties , 2000 .

[4]  A. Maelicke,et al.  Neuronal Nicotinic Receptors in the Locust Locusta migratoria , 1998, The Journal of Biological Chemistry.

[5]  L. Role,et al.  Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. , 1995, Annual review of physiology.

[6]  R Menzel,et al.  IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. , 1999, Journal of neurophysiology.

[7]  F. Grolleau,et al.  Two distinct calcium‐sensitive and ‐insensitive PKC up‐ and down‐regulate an α‐bungarotoxin‐resistant nAChR1 in insect neurosecretory cells (DUM neurons) , 2003, The European journal of neuroscience.

[8]  J. Rybak,et al.  Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera , 2005, Journal of Comparative Physiology A.

[9]  S. Sands,et al.  Neuronal nicotinic acetylcholine receptor currents in phaeochromocytoma (PC12) cells: dual mechanisms of rectification. , 1992, The Journal of physiology.

[10]  H. L. Corronc,et al.  Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells , 1990, Brain Research.

[11]  G. Lenaers,et al.  Apisα2, Apisα7-1 and Apisα7-2: three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain , 2005 .

[12]  V. Salgado,et al.  Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. , 2004, Journal of insect physiology.

[13]  S. Fucile Ca2+ permeability of nicotinic acetylcholine receptors. , 2004, Cell calcium.

[14]  U. Homberg Neurotransmitters and neuropeptides in the brain of the locust , 2002, Microscopy research and technique.

[15]  S. Sands,et al.  Calcium permeability of neuronal nicotinic acetylcholine receptor channels in PC12 cells , 1991, Brain Research.

[16]  B. Trimmer,et al.  Expression and function of two nicotinic subunits in insect neurons. , 2005, Journal of neurobiology.

[17]  S. Kreissl,et al.  Dissociated neurons of the pupal honeybee brain in cell culture , 1992, Journal of neurocytology.

[18]  D. Sattelle,et al.  Acetylcholine Receptors on the Cell Body Membrane of Giant Interneurone 2 in the Cockroach, Periplaneta Americana , 1983 .

[19]  G. Bicker,et al.  Calcium imaging reveals nicotinic acetylcholine receptors on cultured mushroom body neurons. , 1994, Journal of neurophysiology.

[20]  I. Bermúdez,et al.  Pharmacological properties of nicotinic acetylcholine receptors in isolated Locusta migratoria neurones , 2002, Microscopy research and technique.

[21]  J. Hildebrand,et al.  Distribution of acetylcholinesterase activity in the deutocerebrum of the sphinx moth Manduca sexta , 1995, Cell and Tissue Research.

[22]  Y. Jan,et al.  L‐glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. , 1976, The Journal of physiology.

[23]  F. Tiaho,et al.  Effects of nicotinic and muscarinic ligands on embryonic neurones of Periplaneta americana in primary culture: a whole cell clamp study. , 1998, Journal of insect physiology.

[24]  G. Shepherd,et al.  Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. , 1997, Annual review of neuroscience.

[25]  P. Déglise,et al.  The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells , 2002, Neuroscience Letters.

[26]  D. O'Dowd,et al.  Cholinergic Synaptic Transmission in Adult Drosophila Kenyon Cells In Situ , 2006, The Journal of Neuroscience.

[27]  B. Trimmer,et al.  The nicotinic α subunit MARA1 is necessary for cholinergic evoked calcium transients in Manduca neurons , 2001, Neuroscience Letters.

[28]  N. Millar Assembly and subunit diversity of nicotinic acetylcholine receptors. , 2003, Biochemical Society transactions.

[29]  J. Casida,et al.  Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. , 2003, Annual review of entomology.

[30]  M. Gauthier,et al.  Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee , 1996, Behavioural Brain Research.

[31]  D. Sattelle,et al.  Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta americana) , 1984 .

[32]  Daniel Flanagan,et al.  Morphology and response characteristics of neurones in the deutocerebrum of the brain in the honeybeeApis mellifera , 1989, Journal of Comparative Physiology A.

[33]  R. Pitman,et al.  The pharmacology of α-bungarotoxin-resistant acetylcholine receptors on an identified cockroach motoneurone , 1993, Journal of Comparative Physiology A.

[34]  B. Grünewald,et al.  Differential expression of voltage-sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway , 2003, Journal of Experimental Biology.

[35]  M. Gauthier,et al.  Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee , 2001, Journal of Comparative Physiology A.

[36]  C. Masson,et al.  Dendritic pattern development of the honeybee antennal lobe neurons: a laser scanning confocal microscopic study. , 1999, Journal of neurobiology.

[37]  Andrew K. Jones,et al.  The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. , 2006, Genome research.

[38]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[39]  M Pelizzone,et al.  Ganglion cells from chick retina display multiple functional nAChR subtypes , 2004, Neuroreport.

[40]  James N. Weiss The Hill equation revisited: uses and misuses , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[41]  S. Buckingham,et al.  Cultured insect mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine, and dopamine. , 1999, Journal of neurophysiology.

[42]  D. Adams,et al.  Calcium permeability and modulation of nicotinic acetylcholine receptor-channels in rat parasympathetic neurons , 1992, Journal of Physiology-Paris.

[43]  I. Meinertzhagen,et al.  Synaptic organization of the mushroom body calyx in Drosophila melanogaster , 2002, The Journal of comparative neurology.

[44]  M. Verbitsky,et al.  Mixed nicotinic–muscarinic properties of the α9 nicotinic cholinergic receptor , 2000, Neuropharmacology.

[45]  R Menzel,et al.  Ionic currents of Kenyon cells from the mushroom body of the honeybee , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  B Quenet,et al.  A morphometric classification of pupal honeybee antennal lobe neurones in culture , 1994, Neuroreport.

[47]  D. Sattelle,et al.  Acetylcholine receptors of thoracic dorsal midline neurones in the cockroach, Periplaneta Americana. , 1992, Archives of insect biochemistry and physiology.

[48]  J. Casida,et al.  Structure and diversity of insect nicotinic acetylcholine receptors. , 2001, Pest management science.

[49]  S. Sachse,et al.  Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. , 2002, Journal of neurophysiology.

[50]  B. Grünewald,et al.  Involvement of alpha-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). , 2006, Neurobiology of learning and memory.

[51]  C. Lingle,et al.  Activation of nicotinic acetylcholine receptors on cultured Drosophila and other insect neurones. , 1993, The Journal of physiology.

[52]  J. Erber,et al.  Quantitative autoradiographic localization of [125I]α-bungarotoxin binding sites in the honeybee brain , 1990, Brain Research.

[53]  Sebastian Kirschner,et al.  Dual olfactory pathway in the honeybee, Apis mellifera , 2006, The Journal of comparative neurology.

[54]  O. Andersen,et al.  Surface charges and ion channel function. , 1991, Annual review of physiology.

[55]  The Honeybee Genome Sequencing Consortium,et al.  Erratum: Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[56]  G. Bicker,et al.  Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor‐like antigen in the brain of the honeybee , 1989, The Journal of comparative neurology.

[57]  A. Hill,et al.  The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves , 1910 .

[58]  D. Sattelle,et al.  Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. , 2007, Trends in pharmacological sciences.

[59]  Gerd Bicker Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee , 1999, Microscopy research and technique.

[60]  S. Wonnacott,et al.  Neuronal nicotinic receptors , 2001 .

[61]  R. Osborne Insect neurotransmission: neurotransmitters and their receptors. , 1996, Pharmacology & therapeutics.

[62]  M. Oortgiesen,et al.  Differential effects of physostigmine and organophosphates on nicotinic receptors in neuronal cells of different species. , 1998, Neurotoxicology.

[63]  S. Buckingham,et al.  Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors , 2006, Journal of neurochemistry.

[64]  L. Dwoskin,et al.  Competitive neuronal nicotinic receptor antagonists: a new direction for drug discovery. , 2001, The Journal of pharmacology and experimental therapeutics.

[65]  D. Wüstenberg,et al.  Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera , 2004, Journal of Comparative Physiology A.

[66]  B. Trimmer,et al.  Antisense inhibition of neuronal nicotinic receptors in the tobacco-feeding insect, Manduca sexta. , 2003, Archives of insect biochemistry and physiology.

[67]  R. Nauen,et al.  Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). , 2001, Pest management science.

[68]  D. Sattelle,et al.  Role of loop D of the α7 nicotinic acetylcholine receptor in its interaction with the insecticide imidacloprid and related neonicotinoids , 2000, British journal of pharmacology.

[69]  D. Wüstenberg,et al.  Learning Channels. Cellular Physiology of Odor Processing Neurons Within the Honeybee Brain , 2004, Acta biologica Hungarica.

[70]  D. Sattelle,et al.  The actions of the neonicotinoid imidacloprid on cholinergic neurons of Drosophila melanogaster , 2006, Invertebrate Neuroscience.

[71]  W. Hevers,et al.  Ionic currents of Drosophila embryonic neurons derived from selectively cultured CNS midline precursors. , 2000, Journal of neurobiology.

[72]  J. C. Hall,et al.  Identification of a cholinergic synapse in the giant fiber pathway of Drosophila using conditional mutations of acetylcholine synthesis. , 1984, Journal of neurogenetics.

[73]  E. Gundelfinger How complex is the nicotinic receptor system of insects? , 1992, Trends in Neurosciences.

[74]  J. Benson Electrophysiological Pharmacology of the Nicotinic and Muscarinic Cholinergic Responses of Isolated Neuronal Somata from Locust Thoracic Ganglia , 1992 .

[75]  Gerd Bicker,et al.  Transmitter-induced calcium signalling in cultured neurons of the insect brain , 1996, Journal of Neuroscience Methods.

[76]  M. Dacher,et al.  Antennal tactile learning in the honeybee: Effect of nicotinic antagonists on memory dynamics , 2005, Neuroscience.

[77]  R. Menzel,et al.  Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera , 1999, The Journal of physiology.

[78]  J P Changeux,et al.  Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. , 1996, The EMBO journal.

[79]  G. B. Watson,et al.  Pharmacological Characterization of an Epibatidine Binding Site in the Nerve Cord ofPeriplaneta americana , 1997 .