A G ] 2 A pr 2 01 8 CONTRACTIBLE STABILITY SPACES AND FAITHFUL BRAID GROUP ACTIONS

We prove that any ‘finite-type’ component of a stability space of a triangulated category is contractible. The motivating example of such a component is the stability space of the Calabi–Yau-N category D (ΓNQ) associated to an ADE Dynkin quiver. In addition to showing that this is contractible we prove that the braid group Br (Q) acts freely upon it by spherical twists, in particular that the spherical twist group Br (ΓNQ) is isomorphic to Br (Q). This generalises Brav–Thomas’ result for the N = 2 case. Other classes of triangulated categories with finite-type components in their stability spaces include locally-finite triangulated categories with finite rank Grothendieck group and discrete derived categories of finite global dimension.

[1]  Y. Qiu,et al.  Stability conditions and the A2 quiver , 2014, Advances in Mathematics.

[2]  Yuya Mizuno,et al.  Silting-discrete triangulated categories and contractible stability spaces , 2017 .

[3]  Akishi Ikeda Stability conditions on CYN categories associated to An-quivers and period maps , 2017 .

[4]  Nathan Broomhead,et al.  Discrete derived categories II: the silting pairs CW complex and the stability manifold , 2014, J. Lond. Math. Soc..

[5]  H. Krause COHOMOLOGICAL LENGTH FUNCTIONS , 2012, Nagoya Mathematical Journal.

[6]  Y. Qiu C‐sortable words as green mutation sequences , 2012, 1205.0034.

[7]  Y. Qiu STABILITY CONDITIONS AND QUANTUM DILOGARITHM IDENTITIES FOR DYNKIN QUIVERS , 2011, 1111.1010.

[8]  A. King,et al.  Exchange graphs and Ext quivers , 2011, 1109.2924.

[9]  L. Katzarkov,et al.  Bridgeland stability conditions on the acyclic triangular quiver , 2014, 1410.0904.

[10]  Y. Qiu Decorated marked surfaces: spherical twists versus braid twists , 2014, 1407.0806.

[11]  D. Tamaki,et al.  Totally normal cellular stratified spaces and applications to the configuration space of graphs , 2013, 1312.7368.

[12]  D. Ploog,et al.  Discrete derived categories I: homomorphisms, autoequivalences and t-structures , 2013, 1312.5203.

[13]  A. Bondal Operations on -structures and perverse coherent sheaves , 2013, 1308.2549.

[14]  M. Kontsevich,et al.  Dynamical systems and categories , 2013, 1307.8418.

[15]  I. Smith,et al.  Quadratic differentials as stability conditions , 2013, Publications mathématiques de l'IHÉS.

[16]  D. Ploog,et al.  Averaging t-structures and extension closure of aisles , 2012, 1208.5691.

[17]  B. Keller Cluster algebras and derived categories , 2012, 1202.4161.

[18]  J. Woolf Some metric properties of spaces of stability conditions , 2011, 1108.2668.

[19]  Osamu Iyama,et al.  Silting mutation in triangulated categories , 2010, J. Lond. Math. Soc..

[20]  B. Keller On cluster theory and quantum dilogarithm identities , 2011, 1102.4148.

[21]  H. Krause Report on locally finite triangulated categories , 2011, 1101.3233.

[22]  H. Uehara,et al.  Stability Conditions on An-Singularities , 2010 .

[23]  H. Thomas,et al.  Braid groups and Kleinian singularities , 2009, 0910.2521.

[24]  T. Bridgeland Stability conditions and Kleinian singularities , 2005, math/0508257.

[25]  Claire Amiot Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.

[26]  Idun Reiten,et al.  Homological and Homotopical Aspects of Torsion Theories , 2007 .

[27]  Emanuele Macrì Stability conditions on curves , 2007, Mathematical Research Letters.

[28]  Claire Amiot ON THE STRUCTURE OF TRIANGULATED CATEGORIES WITH FINITELY MANY INDECOMPOSABLES , 2006, math/0612141.

[29]  Donald Stanley Invariants of "t"-structures and classification of nullity classes , 2006, math/0602252.

[30]  D. Krammer A class of garside groupoid structures on the pure braid group , 2005, math/0509165.

[31]  J. Xiao,et al.  Locally finite triangulated categories , 2005 .

[32]  So Okada STABILITY MANIFOLD OF P¹ , 2005 .

[33]  C. Geiss,et al.  Classification of discrete derived categories , 2004 .

[34]  T. Bridgeland Stability conditions on $K3$ surfaces , 2003, math/0307164.

[35]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[36]  Richard P. Thomas Stability conditions and the braid group , 2002, math/0212214.

[37]  D. Vossieck The Algebras with Discrete Derived Category , 2001 .

[38]  Richard P. Thomas,et al.  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.

[39]  B. Wajnryb Artin groups and geometric monodromy , 1999 .

[40]  Soura Dasgupta,et al.  I.I Stability Conditions , 1998 .

[41]  I. Reiten,et al.  Tilting in Abelian Categories and Quasitilted Algebras , 1996 .

[42]  J. Vannier,et al.  Groupe de monodromie géométrique des singularités simples , 1996 .

[43]  Masaki Kashiwara,et al.  Sheaves on Manifolds , 1990 .

[44]  W. Geigle The Krull-Gabriel dimension of the representation theory of a tame hereditary Artin algebra and applications to the structure of exact sequences , 1985 .

[45]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .

[46]  H. Hilden,et al.  Isotopies of homeomorphisms of Riemann surfaces and a theorem about Artin's braid group , 1972 .

[47]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[48]  P. Deligne,et al.  Les immeubles des groupes de tresses généralisés , 1972 .