Controlling the Cell and Surface Architecture of Cellulose Nanofiber/PVA/Ti3C2T MXene Hybrid Cryogels for Optimized Permittivity and EMI Shielding Performance

[1]  Kun Zhou,et al.  Controlled Distributed Ti3C2Tx Hollow Microspheres on Thermally Conductive Polyimide Composite Films for Excellent Electromagnetic Interference Shielding , 2023, Advanced materials.

[2]  Hai-Bo Zhao,et al.  Multifunctional protective aerogel with superelasticity over −196 to 500 °C , 2022, Nano Research.

[3]  R. Ghaffarian,et al.  A comparison study on polymeric nanocomposite foams with various carbon nanoparticles: adjusting radiation time and effect on electrical behavior and microcellular structure , 2022, International Journal of Smart and Nano Materials.

[4]  Meiling Zhang,et al.  Nanocellulose-based aerogels with devisable structure and tunable properties via ice-template induced self-assembly , 2022, Industrial Crops and Products.

[5]  Junwei Gu,et al.  Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management , 2022, Nano Research.

[6]  X. Jia,et al.  Lightweight and Compressible Anisotropic Honeycomb-like Graphene Composites for Highly Tunable Electromagnetic Shielding with Multiple Functions , 2022, Materials Today Physics.

[7]  Shifeng Hou,et al.  The Reinforced Electromagnetic Interference Shielding Performance of Thermal Reduced Graphene Oxide Films via Polyimide Pyrolysis , 2022, ACS omega.

[8]  A. Dufresne,et al.  Multifunctional Nanocellulose/Carbon Nanotube Composite Aerogels for High-Efficiency Electromagnetic Interference Shielding , 2022, ACS Sustainable Chemistry & Engineering.

[9]  Junwei Gu,et al.  Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology , 2022, Chinese Journal of Polymer Science.

[10]  Jilai Wang,et al.  Mechanically robust Ti3C2Tx MXene/Carbon fiber fabric/Thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications , 2022, Materials & Design.

[11]  H. Liimatainen,et al.  Ultrahigh fluid sorption capacity of superhydrophobic and tough cryogels of cross-linked cellulose nanofibers, cellulose nanocrystals, and Ti3C2Tx MXene nanosheets , 2022, Journal of Materials Chemistry A.

[12]  Tao Li,et al.  Multi-Directional Freeze Casting of Porous Ceramics with Bone-Inspired Microstructure , 2022, SSRN Electronic Journal.

[13]  Junwei Gu,et al.  Hierarchically Multifunctional Polyimide Composite Films with Strongly Enhanced Thermal Conductivity , 2021, Nano-Micro Letters.

[14]  F. Qin,et al.  Clarification of basic concepts for electromagnetic interference shielding effectiveness , 2021, Journal of Applied Physics.

[15]  Hongqi Dai,et al.  Flexible graphene/silver nanoparticles/aluminum film paper for high-performance electromagnetic interference shielding , 2021, Materials & Design.

[16]  Haisong Qi,et al.  Lignocellulose nanofibrils/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance , 2021, Chemical Engineering Journal.

[17]  Xiao-Li Li,et al.  Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices , 2021, Chemical Engineering Journal.

[18]  Yuezhan Feng,et al.  Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding. , 2021, Journal of colloid and interface science.

[19]  Hengfei Qin,et al.  Multifunctional Superelastic Cellulose Nanofibrils Aerogel by Dual Ice‐Templating Assembly , 2021, Advanced Functional Materials.

[20]  N. Rajamohan,et al.  Bibliometric analysis and recent trends on MXene research - A comprehensive review. , 2021, Chemosphere.

[21]  P. He,et al.  Asymmetric layered structural design with segregated conductive network for absorption-dominated high-performance electromagnetic interference shielding , 2021, Chemical Engineering Journal.

[22]  Hyungsup Kim,et al.  Robust Nanocellulose/Metal-Organic Framework Aerogel Composites: Superior Performance for Static and Continuous Disposal of Chemical Warfare Agent Simulants. , 2021, ACS applied materials & interfaces.

[23]  Yu-Zhong Wang,et al.  Multifunctional Flame-Retardant Melamine-Based Hybrid Foam for Infrared Stealth, Thermal Insulation, and Electromagnetic Interference Shielding. , 2021, ACS applied materials & interfaces.

[24]  Shenglong Tian,et al.  Wood-derived nanostructured hybrid for efficient flame retarding and electromagnetic shielding , 2021 .

[25]  Wenjing Yuan,et al.  Conductive MXene/melamine sponge combined with 3D printing resin base prepared as an electromagnetic interferences shielding switch , 2021 .

[26]  D. Cao,et al.  MXenes for polymer matrix electromagnetic interference shielding composites: A review , 2021 .

[27]  Zhonglei Ma,et al.  Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding , 2021 .

[28]  Y. Poplavko,et al.  Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings , 2021, Coatings.

[29]  Y. Gogotsi,et al.  Characterization of MXenes at every step, from their precursors to single flakes and assembled films , 2020, Progress in Materials Science.

[30]  Meifang Zhu,et al.  Modulating electromagnetic interference shielding performance of ultra-lightweight composite foams through shape memory function , 2021 .

[31]  V. Anju Nanocellulose-based composites for EMI shielding applications , 2021 .

[32]  W. Cao,et al.  A Nano-Micro Engineering Nanofiber for Electromagnetic Absorber, Green Shielding and Sensor , 2020, Nano-Micro Letters.

[33]  Q. Fu,et al.  Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. , 2020, Journal of colloid and interface science.

[34]  W. Yin,et al.  Anisotropic electromagnetic absorption of aligned Ti3C2TX MXene/gelatin nanocomposite aerogel. , 2020, ACS applied materials & interfaces.

[35]  C. Zhang,et al.  Nanocellulose‐MXene Biomimetic Aerogels with Orientation‐Tunable Electromagnetic Interference Shielding Performance , 2020, Advanced science.

[36]  Jie Kong,et al.  3D Shapeable, Superior Electrically Conductive Cellulose Nanofibers/Ti3C2Tx MXene Aerogels/Epoxy Nanocomposites for Promising EMI Shielding , 2020, Research.

[37]  Pengbo Liu,et al.  Electromagnetic Interference Shielding Performance of Anisotropic Polyimide/graphene Composite Aerogels. , 2020, ACS applied materials & interfaces.

[38]  H. Liimatainen,et al.  Enhancing packaging board properties using micro- and nanofibers prepared from recycled board , 2020, Cellulose.

[39]  K. Karan,et al.  Filler-Free Conducting Polymers as a New Class of Transparent Electromagnetic Interference Shields. , 2020, ACS applied materials & interfaces.

[40]  H. Maleki,et al.  Directional Freeze‐Casting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications , 2020, Advanced Engineering Materials.

[41]  A. Balandin,et al.  Graphene Epoxy-Based Composites as Efficient Electromagnetic Absorbers in the Extremely High Frequency Band. , 2020, ACS applied materials & interfaces.

[42]  Yang Fan,et al.  Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation , 2020 .

[43]  Tingting Wu,et al.  Ultralight, Flexible and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. , 2020, ACS nano.

[44]  Chao Gao,et al.  High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading , 2020 .

[45]  K. Oksman,et al.  Lightweight, flexible, and multifunctional anisotropic nanocellulose-based aerogels for CO2 adsorption , 2020, Cellulose.

[46]  Nilo T. Bugtai,et al.  Electromagnetic shielding to improve EMC of a robotic medical device , 2019, THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019.

[47]  Yuan Hu,et al.  Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings , 2019, Chemical Engineering Journal.

[48]  Jun Pyo Hong,et al.  Ultralight and Mechanically Robust Ti3C2Tx Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding. , 2019, ACS applied materials & interfaces.

[49]  Yaquan Wang,et al.  Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications , 2019, Chemical Engineering Journal.

[50]  Yury Gogotsi,et al.  The Rise of MXenes. , 2019, ACS nano.

[51]  X. F. Chen,et al.  Stretched graphene nanosheets formed the “obstacle walls” in melamine sponge towards effective electromagnetic interference shielding applications , 2019, Materials & Design.

[52]  J. Hannu,et al.  Biodegradable multiphase poly(lactic acid)/biochar/graphite composites for electromagnetic interference shielding , 2019, Composites Science and Technology.

[53]  Guangxian Li,et al.  Facile and Green Method To Structure Ultralow-Threshold and Lightweight Polystyrene/MWCNT Composites with Segregated Conductive Networks for Efficient Electromagnetic Interference Shielding , 2019, ACS Sustainable Chemistry & Engineering.

[54]  M. Malaki,et al.  MXenes and ultrasonication , 2019, Journal of Materials Chemistry A.

[55]  J. Hannu,et al.  Lightweight Hierarchical Carbon Nanocomposites with Highly Efficient and Tunable Electromagnetic Interference Shielding Properties , 2019, ACS applied materials & interfaces.

[56]  Lai-fei Cheng,et al.  Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption , 2019, Advanced Optical Materials.

[57]  Yongsheng Chen,et al.  Graphene‐Based Materials toward Microwave and Terahertz Absorbing Stealth Technologies , 2019, Advanced Optical Materials.

[58]  Canhui Lu,et al.  Ultrathin MXene/Calcium Alginate Aerogel Film for High‐Performance Electromagnetic Interference Shielding , 2019, Advanced Materials Interfaces.

[59]  Lai-fei Cheng,et al.  Lightweight Ti2CT x MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. , 2019, ACS applied materials & interfaces.

[60]  Balwant Singh,et al.  Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application , 2018, Materials & Design.

[61]  Quanchao Zhang,et al.  Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. , 2018, Journal of colloid and interface science.

[62]  A. Singh,et al.  A review of porous lightweight composite materials for electromagnetic interference shielding , 2018, Composites Part B: Engineering.

[63]  Yujing Liu,et al.  Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties , 2018 .

[64]  M. Godinho,et al.  Oils sorption on hydrophobic nanocellulose aerogel obtained from the wood furniture industry waste , 2018, Cellulose.

[65]  Hao‐Bin Zhang,et al.  Hydrophobic, Flexible, and Lightweight MXene Foams for High‐Performance Electromagnetic‐Interference Shielding , 2017, Advanced materials.

[66]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[67]  Saad A. Khan,et al.  Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation , 2017, ACS omega.

[68]  Wei-Hsin Liao,et al.  Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding , 2017 .

[69]  Chonghun Han,et al.  Electrical conductivity and EMI shielding effectiveness of polyurethane foam–conductive filler composites , 2017 .

[70]  Yang Zhang,et al.  A Novel Polyaniline-Coated Bagasse Fiber Composite with Core-Shell Heterostructure Provides Effective Electromagnetic Shielding Performance. , 2017, ACS applied materials & interfaces.

[71]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[72]  Tae-Won Lee,et al.  Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers. , 2016, ACS applied materials & interfaces.

[73]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[74]  G. Zhong,et al.  Cellulose composite aerogel for highly efficient electromagnetic interference shielding , 2015 .

[75]  I. Huynen,et al.  Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials , 2013 .

[76]  D. C. Trivedi,et al.  EMI shielding: Methods and materials—A review , 2009 .

[77]  Kia Wiklundh,et al.  An improved method to estimate the impact on digital radio receiver performance of radiated electromagnetic disturbances , 2000 .