Hemoglobin function under extreme life conditions.
暂无分享,去创建一个
M. Castagnola | B. Giardina | M E Clementi | S G Condò | M Castagnola | B Giardina | M. Clementi | S. Condò
[1] A. Desideri,et al. Reduced sensitivity of O2 transport to allosteric effectors and temperature in loggerhead sea turtle hemoglobin: functional and spectroscopic study. , 1992, Biochimica et biophysica acta.
[2] J. Changeux,et al. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.
[3] B. Maresca,et al. Biology of Antarctic Fish , 1992, Springer Berlin Heidelberg.
[4] T. Kleinschmidt,et al. Primary structure and oxygen-binding properties of the hemoglobin from guanaco (Lama guanacoë, Tylopoda). , 1990, Biological chemistry Hoppe-Seyler.
[5] M. T. Sanna,et al. Flight and heat dissipation in birds , 1990, FEBS letters.
[6] G. di Prisco,et al. Adaptation to extreme environments: structure-function relationships in Emperor penguin haemoglobin. , 1994, Journal of molecular biology.
[7] A. F. Riggs. The Bohr effect. , 1988, Annual review of physiology.
[8] R. Petruzzelli,et al. Thermodynamics of oxygen binding to arctic hemoglobins. The case of reindeer. , 1990, Biophysical chemistry.
[9] B. Giardina,et al. Temperature modulation of oxygen transport in a diving mammal (Balaenoptera acutorostrata). , 1990, The Biochemical journal.
[10] L. Camardella,et al. The Biochemistry of Oxygen Transport in Red-Blooded Antarctic Fish , 1991 .
[11] Q. Gibson,et al. The role of diffusion in limiting the rate of ligand binding to hemoglobin. , 1980, The Journal of biological chemistry.
[12] T. Kleinschmidt,et al. Interaction of allosteric effectors with alpha-globin chains and high altitude respiration of mammals. The primary structure of two tylopoda hemoglobins with high oxygen affinity: vicuna (Lama vicugna) and alpaca (Lama pacos). , 1986, Biological chemistry Hoppe-Seyler.
[13] J. Tame,et al. Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[14] G. Prisco,et al. The primary structure and oxygen-binding properties of the single haemoglobin of the high-Antarctic fish Aethotaxis mitopteryx DeWitt* , 1992 .
[15] Q. Gibson,et al. Oxygen equilibrium studies on hemoglobin from the bluefin tuna (Thunnus thynnus). , 1983, Journal of molecular biology.
[16] M. Perutz,et al. Allosteric regulation of crocodilian haemoglobin , 1981, Nature.
[17] M. Brunori,et al. Functional properties of the hemoglobin system of two diving birds (Podiceps nigricollis and Phalacrocorax carbo sinensis) , 1985 .
[18] M. Coletta,et al. A polymerising Root-effect fish hemoglobin with high subunit heterogeneity. Correlation with primary structure. , 1993, European journal of biochemistry.
[19] M. Perrella,et al. Analysis of bicarbonate binding to crocodilian hemoglobin. , 1981, The Journal of biological chemistry.
[20] G. di Prisco,et al. Oxygen transport in extreme environments. , 1991, Trends in biochemical sciences.
[21] Q. Gibson,et al. Cooperative ligand binding to hemoglobin. Effects of temperature and pH on a hemoglobin with spectrophotometrically distinct chains (Tunnus thynnus). , 1982, The Journal of biological chemistry.
[22] C. Hanns,et al. Regulation of the oxygen affinity of haemoglobin from the reindeer (Rangifer tarandus tarandus L.). , 1988 .
[23] C. Bauer,et al. The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. , 1979, The Journal of biological chemistry.
[24] S. Wood. Adaptation of Red Blood Cell Function to Hypoxia and Temperature in Ectothermic Vertebrates , 1980 .
[25] G. di Prisco,et al. The amino acid sequence and oxygen-binding properties of the single hemoglobin of the cold-adapted Antarctic teleost Gymnodraco acuticeps. , 1992, Archives of biochemistry and biophysics.
[26] M. Nuutinen,et al. Arctic adaptation in reindeer The energy saving of a hemoglobin , 1989, FEBS letters.
[27] T. Brittain,et al. An investigation of the co-operative functioning of the haemoglobin of the crocodile, Crocodylus porosus , 1991 .
[28] M. Brunori,et al. Molecular adaptation to physiological requirements: the hemoglobin system of trout. , 1975, Current topics in cellular regulation.
[29] Life in Arctic Environments: Molecular Adaptation of Oxygen-Carrying Proteins , 1991 .
[30] Q. Gibson,et al. Multiple T state conformations in a fish hemoglobin. Carbon monoxide binding to hemoglobin of Thunnus thynnus. , 1981, The Journal of biological chemistry.
[31] P. Lutz. On the Oxygen Affinity of Bird Blood , 1980 .
[32] G. Braunitzer,et al. The primary structures of the major and minor hemoglobin-components of adult Andean goose (Chloephaga melanoptera, Anatidae): the mutation Leu----Ser in position 55 of the beta-chains. , 1987, Biological chemistry Hoppe-Seyler.
[33] F. Bossa,et al. The primary structure of hemoglobin from reindeer (Rangifer tarandus tarandus) and its functional implications. , 1991, Biochimica et biophysica acta.
[34] M. Perutz. Species adaptation in a protein molecule. , 1983, Molecular biology and evolution.
[35] B. Giardina,et al. Arctic life adaptation--II. The function of musk ox (Ovibos muschatos) hemoglobin. , 1989, Comparative biochemistry and physiology. B, Comparative biochemistry.
[36] G. Braunitzer,et al. Studies on yak hemoglobin (Bos grunniens, Bovidae): structural basis for high intrinsic oxygen affinity? , 1985, Biological chemistry Hoppe-Seyler.
[37] G. di Prisco,et al. The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. , 1992, European journal of biochemistry.
[38] F. Leclercq,et al. Direct reciprocal allosteric interaction of oxygen and hydrogen carbonate sequence of the haemoglobins of the Caiman (Caiman crocodylus), the Nile crocodile (Crocodylus niloticus) and the Mississippi crocodile (Alligator mississippiensis). , 1981, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.
[39] G. Braunitzer,et al. Homeothermic fish and hemoglobin: primary structure of the hemoglobin from bluefin tuna (Thunnus thynnus, Scromboidei). , 1987, Biological chemistry Hoppe-Seyler.
[40] C. Bauer,et al. Different effects of 2.3 diphosphoglycerate and adenosine triphosphate on the oxygen affinity of adult and foetal human haemoglobin , 1968 .
[41] R. Weber,et al. Functional characterization of fetal and adult yak hemoglobins: an oxygen binding cascade and its molecular basis. , 1988, Archives of biochemistry and biophysics.
[42] G. di Prisco,et al. The hemoglobins of marine and freshwater fish: the search for correlations with physiological adaptation. , 1992, Comparative biochemistry and physiology. B, Comparative biochemistry.
[43] G. Braunitzer,et al. Direkte Reziproke Allosterische Wechsehvirkung von Sauerstoff und Hydrogencarbonat: Die Sequenz Der Hämoglobine von Kaiman (Caiman Crocodylus), Nil-Krokodil (Crocodylus Niloticus) und Mississippi-Krokodil (Alligator Mississippiensis) , 1981 .
[44] F. Jensen,et al. Functional adaptations in hemoglobins from ectothermic vertebrates. , 1988, Annual review of physiology.
[45] M. Nuutinen,et al. Arctic life adaptation--I. The function of reindeer hemoglobin. , 1989, Comparative biochemistry and physiology. B, Comparative biochemistry.
[46] R. Scatena,et al. Arctic life adaptation--III. The function of whale (Balaenoptera acutorostrata) hemoglobin. , 1989, Comparative biochemistry and physiology. B, Comparative biochemistry.