Hemoglobin function under extreme life conditions.

Considering the variety of species that depend on hemoglobin for oxygen transport, these molecules must execute their primary function under extreme environmental conditions. Hence, a thermodynamic analysis of oxygen binding with hemoglobins from different species reveals a series of adaptive mechanisms which are based on the thermodynamic connection between the binding of heterotropic effectors and the reaction with oxygen. The examples reported, from fishes to human fetus, illustrate how evolution can alter the structural basis of the heterotropic interactions to optimize the oxygenation-deoxygenation cycle in dependence of the physiological needs of the particular organisms. Moreover they show that a thermodynamic analysis of the reaction with oxygen overcomes the meaning of a detailed structural and functional characterization going deeper into the physiology of the specific organism.

[1]  A. Desideri,et al.  Reduced sensitivity of O2 transport to allosteric effectors and temperature in loggerhead sea turtle hemoglobin: functional and spectroscopic study. , 1992, Biochimica et biophysica acta.

[2]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[3]  B. Maresca,et al.  Biology of Antarctic Fish , 1992, Springer Berlin Heidelberg.

[4]  T. Kleinschmidt,et al.  Primary structure and oxygen-binding properties of the hemoglobin from guanaco (Lama guanacoë, Tylopoda). , 1990, Biological chemistry Hoppe-Seyler.

[5]  M. T. Sanna,et al.  Flight and heat dissipation in birds , 1990, FEBS letters.

[6]  G. di Prisco,et al.  Adaptation to extreme environments: structure-function relationships in Emperor penguin haemoglobin. , 1994, Journal of molecular biology.

[7]  A. F. Riggs The Bohr effect. , 1988, Annual review of physiology.

[8]  R. Petruzzelli,et al.  Thermodynamics of oxygen binding to arctic hemoglobins. The case of reindeer. , 1990, Biophysical chemistry.

[9]  B. Giardina,et al.  Temperature modulation of oxygen transport in a diving mammal (Balaenoptera acutorostrata). , 1990, The Biochemical journal.

[10]  L. Camardella,et al.  The Biochemistry of Oxygen Transport in Red-Blooded Antarctic Fish , 1991 .

[11]  Q. Gibson,et al.  The role of diffusion in limiting the rate of ligand binding to hemoglobin. , 1980, The Journal of biological chemistry.

[12]  T. Kleinschmidt,et al.  Interaction of allosteric effectors with alpha-globin chains and high altitude respiration of mammals. The primary structure of two tylopoda hemoglobins with high oxygen affinity: vicuna (Lama vicugna) and alpaca (Lama pacos). , 1986, Biological chemistry Hoppe-Seyler.

[13]  J. Tame,et al.  Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Prisco,et al.  The primary structure and oxygen-binding properties of the single haemoglobin of the high-Antarctic fish Aethotaxis mitopteryx DeWitt* , 1992 .

[15]  Q. Gibson,et al.  Oxygen equilibrium studies on hemoglobin from the bluefin tuna (Thunnus thynnus). , 1983, Journal of molecular biology.

[16]  M. Perutz,et al.  Allosteric regulation of crocodilian haemoglobin , 1981, Nature.

[17]  M. Brunori,et al.  Functional properties of the hemoglobin system of two diving birds (Podiceps nigricollis and Phalacrocorax carbo sinensis) , 1985 .

[18]  M. Coletta,et al.  A polymerising Root-effect fish hemoglobin with high subunit heterogeneity. Correlation with primary structure. , 1993, European journal of biochemistry.

[19]  M. Perrella,et al.  Analysis of bicarbonate binding to crocodilian hemoglobin. , 1981, The Journal of biological chemistry.

[20]  G. di Prisco,et al.  Oxygen transport in extreme environments. , 1991, Trends in biochemical sciences.

[21]  Q. Gibson,et al.  Cooperative ligand binding to hemoglobin. Effects of temperature and pH on a hemoglobin with spectrophotometrically distinct chains (Tunnus thynnus). , 1982, The Journal of biological chemistry.

[22]  C. Hanns,et al.  Regulation of the oxygen affinity of haemoglobin from the reindeer (Rangifer tarandus tarandus L.). , 1988 .

[23]  C. Bauer,et al.  The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. , 1979, The Journal of biological chemistry.

[24]  S. Wood Adaptation of Red Blood Cell Function to Hypoxia and Temperature in Ectothermic Vertebrates , 1980 .

[25]  G. di Prisco,et al.  The amino acid sequence and oxygen-binding properties of the single hemoglobin of the cold-adapted Antarctic teleost Gymnodraco acuticeps. , 1992, Archives of biochemistry and biophysics.

[26]  M. Nuutinen,et al.  Arctic adaptation in reindeer The energy saving of a hemoglobin , 1989, FEBS letters.

[27]  T. Brittain,et al.  An investigation of the co-operative functioning of the haemoglobin of the crocodile, Crocodylus porosus , 1991 .

[28]  M. Brunori,et al.  Molecular adaptation to physiological requirements: the hemoglobin system of trout. , 1975, Current topics in cellular regulation.

[29]  Life in Arctic Environments: Molecular Adaptation of Oxygen-Carrying Proteins , 1991 .

[30]  Q. Gibson,et al.  Multiple T state conformations in a fish hemoglobin. Carbon monoxide binding to hemoglobin of Thunnus thynnus. , 1981, The Journal of biological chemistry.

[31]  P. Lutz On the Oxygen Affinity of Bird Blood , 1980 .

[32]  G. Braunitzer,et al.  The primary structures of the major and minor hemoglobin-components of adult Andean goose (Chloephaga melanoptera, Anatidae): the mutation Leu----Ser in position 55 of the beta-chains. , 1987, Biological chemistry Hoppe-Seyler.

[33]  F. Bossa,et al.  The primary structure of hemoglobin from reindeer (Rangifer tarandus tarandus) and its functional implications. , 1991, Biochimica et biophysica acta.

[34]  M. Perutz Species adaptation in a protein molecule. , 1983, Molecular biology and evolution.

[35]  B. Giardina,et al.  Arctic life adaptation--II. The function of musk ox (Ovibos muschatos) hemoglobin. , 1989, Comparative biochemistry and physiology. B, Comparative biochemistry.

[36]  G. Braunitzer,et al.  Studies on yak hemoglobin (Bos grunniens, Bovidae): structural basis for high intrinsic oxygen affinity? , 1985, Biological chemistry Hoppe-Seyler.

[37]  G. di Prisco,et al.  The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. , 1992, European journal of biochemistry.

[38]  F. Leclercq,et al.  Direct reciprocal allosteric interaction of oxygen and hydrogen carbonate sequence of the haemoglobins of the Caiman (Caiman crocodylus), the Nile crocodile (Crocodylus niloticus) and the Mississippi crocodile (Alligator mississippiensis). , 1981, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[39]  G. Braunitzer,et al.  Homeothermic fish and hemoglobin: primary structure of the hemoglobin from bluefin tuna (Thunnus thynnus, Scromboidei). , 1987, Biological chemistry Hoppe-Seyler.

[40]  C. Bauer,et al.  Different effects of 2.3 diphosphoglycerate and adenosine triphosphate on the oxygen affinity of adult and foetal human haemoglobin , 1968 .

[41]  R. Weber,et al.  Functional characterization of fetal and adult yak hemoglobins: an oxygen binding cascade and its molecular basis. , 1988, Archives of biochemistry and biophysics.

[42]  G. di Prisco,et al.  The hemoglobins of marine and freshwater fish: the search for correlations with physiological adaptation. , 1992, Comparative biochemistry and physiology. B, Comparative biochemistry.

[43]  G. Braunitzer,et al.  Direkte Reziproke Allosterische Wechsehvirkung von Sauerstoff und Hydrogencarbonat: Die Sequenz Der Hämoglobine von Kaiman (Caiman Crocodylus), Nil-Krokodil (Crocodylus Niloticus) und Mississippi-Krokodil (Alligator Mississippiensis) , 1981 .

[44]  F. Jensen,et al.  Functional adaptations in hemoglobins from ectothermic vertebrates. , 1988, Annual review of physiology.

[45]  M. Nuutinen,et al.  Arctic life adaptation--I. The function of reindeer hemoglobin. , 1989, Comparative biochemistry and physiology. B, Comparative biochemistry.

[46]  R. Scatena,et al.  Arctic life adaptation--III. The function of whale (Balaenoptera acutorostrata) hemoglobin. , 1989, Comparative biochemistry and physiology. B, Comparative biochemistry.