Of Mice and Men, and Chandeliers

How does the human neocortex reliably propagate information through neural circuits? One mechanism appears to involve relying on strong connections from pyramidal neurons to interneurons and a depolarizing action of cortical chandelier cells.

[1]  Brendon O. Watson,et al.  Internal Dynamics Determine the Cortical Response to Thalamic Stimulation , 2005, Neuron.

[2]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[3]  B. Sakmann,et al.  Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex , 2004, Nature.

[4]  M. Brecht,et al.  Behavioural report of single neuron stimulation in somatosensory cortex , 2008, Nature.

[5]  John R Huguenard,et al.  Synaptic inhibition of pyramidal cells evoked by different interneuronal subtypes in layer v of rat visual cortex. , 2002, Journal of neurophysiology.

[6]  J. Szentágothai The ‘module-concept’ in cerebral cortex architecture , 1975, Brain Research.

[7]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[8]  D. Lewis,et al.  Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. , 2008, Journal of neurophysiology.

[9]  J. DeFelipe,et al.  Morphology and distribution of chandelier cell axon terminals in the mouse cerebral cortex and claustroamygdaloid complex. , 2009, Cerebral cortex.

[10]  A. Zaitsev,et al.  Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. , 2007, Journal of neurophysiology.

[11]  Rafael Yuste,et al.  Persistently Active, Pacemaker-Like Neurons in Neocortex , 2007, Front. Neurosci..

[12]  A. Burkhalter,et al.  Axo‐axonic synapses formed by somatostatin‐expressing GABAergic neurons in rat and monkey visual cortex , 2002, The Journal of comparative neurology.

[13]  H. Monyer,et al.  GABAergic Excitation in the Basolateral Amygdala , 2006, The Journal of Neuroscience.

[14]  A. Lansner,et al.  The cortex as a central pattern generator , 2005, Nature Reviews Neuroscience.

[15]  J. DeFelipe,et al.  The distribution of chandelier cell axon terminals that express the GABA plasma membrane transporter GAT-1 in the human neocortex. , 2007, Cerebral cortex.

[16]  Csaba Varga,et al.  Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex , 2008, PLoS biology.

[17]  D. Schmechel,et al.  Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory‐motor cortex , 1985, The Journal of comparative neurology.

[18]  J. Zhu,et al.  Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons , 2004, The Journal of Neuroscience.

[19]  A. Thomson,et al.  Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices. , 1988, Journal of neurophysiology.

[20]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[21]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[22]  F. Valverde,et al.  A specialized type of neuron in the visual cortex of cat: A Golgi and electron microscope study of chandelier cells , 1980, The Journal of comparative neurology.

[23]  G. Tamás,et al.  Summation of unitary IPSPs elicited by identified axo-axonic interneurons. , 2004, Cerebral cortex.

[24]  Santiago Ramón y Cajal,et al.  Recuerdos de mi vida: historia de mi labor científica , 1995 .

[25]  Juha Voipio,et al.  GABAergic Depolarization of the Axon Initial Segment in Cortical Principal Neurons Is Caused by the Na–K–2Cl Cotransporter NKCC1 , 2008, The Journal of Neuroscience.

[26]  M. Arbib,et al.  Conceptual models of neural organization. , 1974, Neurosciences Research Program bulletin.

[27]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[28]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[29]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[30]  J. DeFelipe,et al.  Specializations of the Cortical Microstructure of Humans , 2007 .

[31]  D. Long I of the Vortex: From Neurons to Self , 2002 .

[32]  J. Lund,et al.  Anatomical comparison of the macaque and marsupial visual cortex: Common features that may reflect retention of essential cortical elements , 1998, The Journal of comparative neurology.

[33]  E. G. Jones,et al.  Varieties and distribution of non‐pyramidal cells in the somatic sensory cortex of the squirrel monkey , 1975, The Journal of comparative neurology.

[34]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[35]  R. Yuste,et al.  Dynamics of Spontaneous Activity in Neocortical Slices , 2001, Neuron.

[36]  E. Vaadia,et al.  Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. , 1993, Journal of neurophysiology.