CAS‐ESM 2: Description and Climate Simulation Performance of the Chinese Academy of Sciences (CAS) Earth System Model (ESM) Version 2

©2020 American Geophysical Union. All rights reserved. Zhang He (Orcid ID: 0000-0001-7222-9072) Zhang Minghua (Orcid ID: 0000-0002-1927-5405) Fei Kece (Orcid ID: 0000-0001-8520-7278) Ji Duoying (Orcid ID: 0000-0002-1887-887X) Wu Chenglai (Orcid ID: 0000-0002-8397-2424) Zhu Jiawen (Orcid ID: 0000-0002-6174-7234) He Juanxiong (Orcid ID: 0000-0003-3816-9656) Chai Zhaoyang (Orcid ID: 0000-0002-8064-9066) Xie Jinbo (Orcid ID: 0000-0002-3003-9155) Dong Xiao (Orcid ID: 0000-0003-2634-2132) Chen Xueshun (Orcid ID: 0000-0002-4708-1149) Lin Pengfei (Orcid ID: 0000-0003-2361-0066) Lin Zhaohui (Orcid ID: 0000-0003-1376-3106) Liu Hailong (Orcid ID: 0000-0002-8780-0398) Liu Xiaohong (Orcid ID: 0000-0002-3994-5955) Wang Tianyi (Orcid ID: 0000-0002-8726-9197) Wang Zifa (Orcid ID: 0000-0002-7062-6012) Xie Zhenghui (Orcid ID: 0000-0002-3137-561X) Xu Yongfu (Orcid ID: 0000-0002-9925-6756) Yu Yongqiang, yong (Orcid ID: 0000-0001-8596-3583) Zeng Qingcun (Orcid ID: 0000-0002-8237-8802) Zhu Jiang (Orcid ID: 0000-0001-9846-8944)

Zhenghui Xie | Yangchun Li | Baodong Wu | Tianyi Wang | Hang Cao | Liang Yuan | He Zhang | Shigang Li | Minghua Zhang | Ying Shi | Jiang Zhu | He Zhang | Jiang Zhu | Xin Gao | Jinbo Xie | Shuwen Zhao | Kangjun Chen | Jinrong Jiang | Pengfei Lin | Dongling Zhang | Yongfu Xu | Xiao Dong | Ying Wei | Huiqun Hao | Juanxiong He | Guangqing Zhou | Duoying Ji | Zhaoyang Chai | Qingcun Zeng | Zhaohui Lin | Pengfei Lin | Shuwen Zhao | Xueshun Chen | Xianghui Kong | Jiawen Zhu | Jiang-Bo Jin | Kece Fei | Duoying Ji | Chenglai Wu | Juanxiong He | Xunqiang Bi | Huansheng Chen | Xueshun Chen | Huiqun Hao | Yangchun Li | Hailong Liu | Xiaohong Liu | Mirong Song | Huijun Wang | Huijun Wang | Xiaocong Wang | Zifa Wang | Yongfu Xu | Yongqiang Yu | Qingcun Zeng | Xiaodong Zeng | Guangqing Zhou | Hang Cao | Xiaocong Wang | Xin Gao | Zifa Wang | Xiaohong Liu | Hailong Liu | Xiaohong Liu | Zifa Wang | D. Ji | Minghua Zhang | P. Lin | Yongqiang Yu | Hailong Liu | Zhenghui Xie | Zhaohui Lin | Huansheng Chen | Qingcun Zeng | Guangqing Zhou | X. Gao | Huijun Wang | Chenglai Wu | Jian-Rong Zhu | Ying Shi | He Zhang | Xiao Dong | Huansheng Chen | Yongqiang Yu | Xiao Dong | Ying Shi | Huijun Wang | X. Bi | Jinbo Xie | Baodong Wu | Xiaodong Zeng | Mirong Song | Jiawen Zhu | Jinrong Jiang | Jiangbo Jin | Kece Fei | Zhaoyang Chai | D. F. Zhang | Shigang Li | Tianyi Wang | Ying Wei | Xueshun Chen | Ying Wei | Liang Yuan | Juanxiong He | Kece Fei | Jiawen Zhu | Yangchun Li | Yongfu Xu | X. Kong | Xiaocong Wang | Kangjun Chen | Jiangbo Jin | Hang Cao | X. Zeng | M. Song | H. Hao | Zhaoyang Chai | Shuwen Zhao | Tianyi Wang | Shigang Li | Xin Gao

[1]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[2]  D. S. Ward,et al.  Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1) , 2012 .

[3]  Robert E. Dickinson,et al.  The Common Land Model (CLM) , 2001 .

[4]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[5]  K. Taylor,et al.  Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models , 2020, Science Advances.

[6]  Yong Luo,et al.  Causes of model dry and warm bias over central U.S. and impact on climate projections , 2017, Nature Communications.

[7]  Jiping Liu,et al.  Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model , 2010 .

[8]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[9]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[10]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[11]  K. Trenberth,et al.  Estimates of Meridional Atmosphere and Ocean Heat Transports , 2001 .

[12]  G. Carmichael,et al.  GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions , 2014 .

[13]  H. Douville,et al.  Evaluation of CMIP6 DECK Experiments With CNRM‐CM6‐1 , 2019, Journal of Advances in Modeling Earth Systems.

[14]  Robert E. Dickinson,et al.  A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance , 2004 .

[15]  X. Zeng,et al.  Growing temperate shrubs over arid and semiarid regions in the Community Land Model–Dynamic Global Vegetation Model , 2008 .

[16]  Zifa Wang,et al.  Development of a Regional Chemical Transport Model with Size-Resolved Aerosol Microphysics and Its Application on Aerosol Number Concentration Simulation over China , 2014 .

[17]  Joanne Simpson,et al.  MODELS OF PRECIPITATING CUMULUS TOWERS , 1969 .

[18]  Zifa Wang,et al.  IAP-AACM v1.0: a global to regional evaluation of the atmospheric chemistry model in CAS-ESM , 2019, Atmospheric Chemistry and Physics.

[19]  Minghua Zhang,et al.  A coupled experiment with LICOM2 as the ocean component of CESM1 , 2016, Journal of Meteorological Research.

[20]  Johannes W. Kaiser,et al.  Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015) , 2017 .

[21]  V. Canuto,et al.  Ocean Turbulence. Part II: Vertical Diffusivities of Momentum, Heat, Salt, Mass, and Passive Scalars , 2002 .

[22]  G. Bergametti,et al.  Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas , 1999 .

[23]  C. Bretherton,et al.  A New Moist Turbulence Parameterization in the Community Atmosphere Model , 2009 .

[24]  The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6 , 2019, Geoscientific Model Development.

[25]  Leonard K. Peters,et al.  A new lumped structure photochemical mechanism for large‐scale applications , 1999 .

[26]  Yunquan Zhang,et al.  A Highly Efficient Dynamical Core of Atmospheric General Circulation Model based on Leap-Format , 2020, 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[27]  B. Bonan,et al.  A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User's Guide , 1996 .

[28]  Min Hu,et al.  Improving new particle formation simulation by coupling a volatility-basis set (VBS) organic aerosol module in NAQPMS+APM , 2019, Atmospheric Environment.

[29]  R. Hallberg,et al.  Representations of the Nordic Seas overflows and their large scale climate impact in coupled models , 2015 .

[30]  William H. Lipscomb,et al.  Modeling Sea Ice Transport Using Incremental Remapping , 2004 .

[31]  D. Saint‐Martin,et al.  Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments , 2013 .

[32]  E. F. Bradley,et al.  Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm , 2003 .

[33]  A. Russell,et al.  The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas , 2008 .

[34]  Zhenya Song,et al.  Assessment of sea ice simulations in the CMIP5 models , 2014 .

[35]  W. G. Strand,et al.  The Community Earth System Model Version 2 (CESM2) , 2020, Journal of Advances in Modeling Earth Systems.

[36]  S. Rahmstorf,et al.  Observed fingerprint of a weakening Atlantic Ocean overturning circulation , 2017, Nature.

[37]  Zong-Liang Yang,et al.  Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale , 2006 .

[38]  Fangyi Li,et al.  Development of the IAP Dynamic Global Vegetation Model , 2014, Advances in Atmospheric Sciences.

[39]  M. Holland,et al.  Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations , 2012 .

[40]  C. Bretherton,et al.  The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model , 2009 .

[41]  M. Raupach,et al.  The effect of roughness elements on wind erosion threshold , 1993 .

[42]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[43]  William H. Lipscomb,et al.  Ridging, strength, and stability in high-resolution sea ice models , 2007 .

[44]  F. Yu,et al.  Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations , 2009 .

[45]  Pengfei Lin,et al.  The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 , 2012, Acta Meteorologica Sinica.

[46]  Yaping Shao,et al.  Simplification of a dust emission scheme and comparison with data , 2004 .

[47]  A. Rosati,et al.  Sensitivity of the North Atlantic Ocean Circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model , 2011 .

[48]  J. Lamarque,et al.  Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2) , 2014 .

[49]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[50]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[51]  Minghua Zhang,et al.  CLOUD-CLIMATE FEEDBACK: HOW MUCH DO WE KNOW? , 2004 .

[52]  F. Pappenberger,et al.  ERA-Interim/Land: a global land surface reanalysis data set , 2015 .

[53]  S. Levis,et al.  A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model , 2012 .

[54]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[55]  Richard Neale,et al.  Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 , 2012 .

[56]  Mariana Vertenstein,et al.  A new flexible coupler for earth system modeling developed for CCSM4 and CESM1 , 2012, Int. J. High Perform. Comput. Appl..

[57]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere transfer scheme(BATS) version 1e as coupled to the NCAR community climate model , 1993 .

[58]  Meng Li,et al.  Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS) , 2017 .

[59]  Minghua Zhang,et al.  Formulation of a new ocean salinity boundary condition and impact on the simulated climate of an oceanic general circulation model , 2017, Science China Earth Sciences.

[60]  Minghua Zhang,et al.  Evaluation of the New Dynamic Global Vegetation Model in CAS-ESM , 2018, Advances in Atmospheric Sciences.

[61]  Zifa Wang,et al.  A deflation module for use in modeling long‐range transport of yellow sand over East Asia , 2000 .

[62]  James C. McWilliams,et al.  Diurnal Coupling in the Tropical Oceans of CCSM3 , 2006 .

[63]  I. Prentice,et al.  Terrestrial nitrogen cycle simulation with a dynamic global vegetation model , 2008 .

[64]  Song-You Hong,et al.  An updated subgrid orographic parameterization for global atmospheric forecast models , 2015 .

[65]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[66]  P. Lin,et al.  Overview of the CMIP6 Historical Experiment Datasets with the Climate System Model CAS FGOALS-f3-L , 2020, Advances in Atmospheric Sciences.

[67]  Xiaodong Zeng,et al.  Evaluating the dependence of vegetation on climate in an improved dynamic global vegetation model , 2010 .

[68]  David A. Smeed,et al.  The North Atlantic Ocean Is in a State of Reduced Overturning , 2018 .

[69]  Philip W. Jones,et al.  The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution , 2019, Journal of Advances in Modeling Earth Systems.

[70]  Zeng Qingcun,et al.  A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments , 1997 .

[71]  Stefan Reimann,et al.  Historical greenhouse gas concentrations for climate modelling (CMIP6) , 2016 .

[72]  Zifa Wang,et al.  Explaining the spatiotemporal variation of fine particle number concentrations over Beijing and surrounding areas in an air quality model with aerosol microphysics. , 2017, Environmental pollution.

[73]  Y. Shao,et al.  A simple expression for wind erosion threshold friction velocity , 2000 .

[74]  Patrick Minnis,et al.  Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future , 2011 .

[75]  Zhenghui Xie,et al.  The Flexible Global Ocean‐Atmosphere‐Land System Model Grid‐Point Version 3 (FGOALS‐g3): Description and Evaluation , 2020, Journal of Advances in Modeling Earth Systems.

[76]  Minghua Zhang,et al.  Impact of the convection triggering function on single‐column model simulations , 2000 .

[77]  G. Bonan The Land Surface Climatology of the NCAR Land Surface Model Coupled to the NCAR Community Climate Model , 1998 .

[78]  William E. Johns,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[79]  W. Collins,et al.  Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .

[80]  F. Jin,et al.  A coupled‐stability index for ENSO , 2006 .

[81]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[82]  M. Holland,et al.  Constraining projections of summer Arctic sea ice , 2012 .

[83]  P. Ciais,et al.  On the formation of high‐latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model , 2009 .

[84]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[85]  Minghua Zhang,et al.  An Orographic‐Drag Parametrization Scheme Including Orographic Anisotropy for All Flow Directions , 2020, Journal of Advances in Modeling Earth Systems.

[86]  Xiang Song,et al.  Development of an establishment scheme for a DGVM , 2016, Advances in Atmospheric Sciences.

[87]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[88]  Minghua Zhang,et al.  Sensitivity of Simulated Climate to Two Atmospheric Models: Interpretation of Differences between Dry Models and Moist Models , 2013 .

[89]  Young-Joon Kim,et al.  Extension of an orographic‐drag parametrization scheme to incorporate orographic anisotropy and flow blocking , 2005 .

[90]  Zifa Wang,et al.  Simulation on different response characteristics of aerosol particle number concentration and mass concentration to emission changes over mainland China. , 2018, The Science of the total environment.

[91]  P. Daum,et al.  Analytical expression for the relative dispersion of the cloud droplet size distribution , 2006 .

[92]  Scale‐aware parameterization of liquid cloud inhomogeneity and its impact on simulated climate in CESM , 2014 .

[93]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[94]  P. Jones,et al.  Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset , 2020, Scientific Data.

[95]  E. Hunke,et al.  An Elastic–Viscous–Plastic Model for Sea Ice Dynamics , 1996 .

[96]  Thomas M. Smith,et al.  Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and Intercomparisons , 2014 .

[97]  David M. Lawrence,et al.  Incorporating organic soil into a global climate model , 2008 .