Multidimensional Harmonic Retrieval via Coupled Canonical Polyadic Decomposition—Part II: Algorithm and Multirate Sampling

In Part I of this paper, we have presented a link between multidimensional harmonic retrieval (MHR) and the recently proposed coupled canonical polyadic decomposition (CPD), which implies new uniqueness conditions for MHR that are more relaxed than the existing results based on a Vandermonde constrained CPD. In Part II, we explain that the coupled CPD also provides a computational framework for MHR. In particular, we present an algebraic method for MHR based on simultaneous matrix diagonalization that is guaranteed to find the exact solution in the noiseless case, under conditions discussed in Part I. Since the simultaneous matrix diagonalization method reduces the MHR problem into an eigenvalue problem, the proposed algorithm can be interpreted as an MHR generalization of the classical ESPRIT method for one-dimensional harmonic retrieval. We also demonstrate that the presented coupled CPD framework for MHR can algebraically support multirate sampling. We develop azn efficient implementation which has about the same computational complexity for single-rate and multirate sampling. Numerical experiments demonstrate that by simultaneously exploiting the harmonic structure in all dimensions and making use of multirate sampling, the coupled CPD framework for MHR can lead to an improved performance compared to the conventional Vandermonde constrained CPD approaches.

[1]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[2]  Florian Roemer,et al.  Subspace Methods and Exploitation of Special Array Structures , 2014 .

[3]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of constant modulus multidimensional harmonic retrieval , 2002, IEEE Trans. Signal Process..

[4]  Lieven De Lathauwer,et al.  Multidimensional Harmonic Retrieval via Coupled Canonical Polyadic Decomposition—Part I: Model and Identifiability , 2017, IEEE Transactions on Signal Processing.

[5]  S. Vanhuffel,et al.  Algorithm for time-domain NMR data fitting based on total least squares , 1994 .

[6]  Yonina C. Eldar,et al.  Sub-Nyquist Sampling , 2011, IEEE Signal Processing Magazine.

[7]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank- (Lr, n, Lr, n, 1) Terms - Part II: Algorithms , 2015, SIAM J. Matrix Anal. Appl..

[8]  S. Leurgans,et al.  A Decomposition for Three-Way Arrays , 1993, SIAM J. Matrix Anal. Appl..

[9]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[10]  Yimin Wei,et al.  Fast Hankel tensor–vector product and its application to exponential data fitting , 2015, Numer. Linear Algebra Appl..

[11]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[12]  Arogyaswami Paulraj,et al.  An analytical constant modulus algorithm , 1996, IEEE Trans. Signal Process..

[13]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[14]  Lieven De Lathauwer,et al.  Multiple Invariance ESPRIT for Nonuniform Linear Arrays: A Coupled Canonical Polyadic Decomposition Approach , 2016, IEEE Transactions on Signal Processing.

[15]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1998, IEEE Trans. Signal Process..

[16]  Xiaoli Ma,et al.  Ieee Transactions on Signal Processing Multidimensional Frequency Estimation with Finite Snapshots in the Presence of Identical Frequencies , 2022 .

[17]  Bruce R. Kowalski,et al.  Generalized rank annihilation factor analysis , 1986 .

[18]  T. Kailath,et al.  A subspace rotation approach to signal parameter estimation , 1986, Proceedings of the IEEE.

[19]  Alle-Jan van der Veen,et al.  Joint diagonalization via subspace fitting techniques , 2001, ICASSP.

[20]  Yonina C. Eldar,et al.  Sub-Nyquist Sampling: Bridging Theory and Practice , 2011, ArXiv.

[21]  Lieven De Lathauwer,et al.  Structured Data Fusion , 2015, IEEE Journal of Selected Topics in Signal Processing.

[22]  Florian Roemer,et al.  Tensor-Based Spatial Smoothing (TB-SS) Using Multiple Snapshots , 2010, IEEE Transactions on Signal Processing.

[23]  Lieven De Lathauwer,et al.  Blind Signal Separation via Tensor Decomposition With Vandermonde Factor: Canonical Polyadic Decomposition , 2013, IEEE Transactions on Signal Processing.

[24]  Tapan K. Sarkar,et al.  On SVD for estimating generalized eigenvalues of singular matrix pencil in noise , 1991, IEEE Trans. Signal Process..

[25]  S. Unnikrishna Pillai,et al.  Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[26]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[27]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[28]  Jun Liu,et al.  An Eigenvector-Based Approach for Multidimensional Frequency Estimation With Improved Identifiability , 2006, IEEE Transactions on Signal Processing.

[29]  Sabine Van Huffel,et al.  Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..

[30]  Yoram Bresler,et al.  A compact Cramer-Rao bound expression for parametric estimation of superimposed signals , 1992, IEEE Trans. Signal Process..

[31]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of multidimensional harmonic retrieval , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[32]  A. Samoson,et al.  Suppression of DOR Sidebands , 1994 .

[33]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank-(Lr, n, Lr, n, 1) Terms - Part I: Uniqueness , 2015, SIAM J. Matrix Anal. Appl..

[34]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..