Mixed Model-Based Hazard Estimation

This article proposes a new method for estimation of the hazard function from a set of censored failure time data, with a view to extending the general approach to more complicated models. The approach is based on a mixed model representation of penalized spline hazard estimators. One payoff is the automation of the smoothing parameter choice through restricted maximum likelihood. Another is the option to use standard mixed model software for automatic hazard estimation.

[1]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[2]  D. Harville Bayesian inference for variance components using only error contrasts , 1974 .

[3]  Martin A. Tanner,et al.  The Estimation of the Hazard Function from Randomly Censored Data by the Kernel Method , 1983 .

[4]  B. Bloxom A constrained spline estimator of a hazard function , 1985 .

[5]  A. Senthilselvan Penalized Likelihood Estimation of Hazard and Intensity Functions , 1987 .

[6]  Antonio Ciampi,et al.  Extended hazard regression for censored survival data with covariates : a spline approximation for the baseline hazard function , 1987 .

[7]  F. O’Sullivan Fast Computation of Fully Automated Log-Density and Log-Hazard Estimators , 1988 .

[8]  C. J. Stone,et al.  Logspline Density Estimation for Censored Data , 1992 .

[9]  Nils Lid Hjort,et al.  Dynamic Likelihood Hazard Rate Estimation , 1993 .

[10]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[11]  R. Wolfinger,et al.  Generalized linear mixed models a pseudo-likelihood approach , 1993 .

[12]  P. Rosenberg,et al.  Hazard function estimation using B-splines. , 1995, Biometrics.

[13]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[14]  J. Nelder,et al.  Hierarchical Generalized Linear Models , 1996 .

[15]  D Commenges,et al.  A penalized likelihood approach for arbitrarily censored and truncated data: application to age-specific incidence of dementia. , 1998, Biometrics.

[16]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[17]  M. Wand,et al.  Local EM Estimation of the Hazard Function for Interval‐Censored Data , 1999, Biometrics.

[18]  Youngjo Lee,et al.  Hierarchical likelihood approach for frailty models , 2001 .

[19]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[20]  J. Nelder,et al.  Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions , 2001 .

[21]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[22]  Rebecca A Betensky,et al.  A local likelihood proportional hazards model for interval censored data , 2002, Statistics in medicine.

[23]  C. J. Stone,et al.  Hazard Regression , 2022 .

[24]  D.,et al.  Regression Models and Life-Tables , 2022 .