Kalman Gain Calculations with a Neural Network

In Kalman filtering, a novel approach is presented to replace a part of the Kalman gain calculations with a neural network. The proposed algorithm avoids matrix inversion in the Kalman filter, hence eliminating the problems encountered.

[1]  Jun Wang,et al.  A recurrent neural network for real-time matrix inversion , 1993 .

[2]  F. Lewis Optimal Estimation: With an Introduction to Stochastic Control Theory , 1986 .

[3]  S. M. Bozic Digital and Kalman filtering , 1979 .

[4]  Soo-Young Lee,et al.  An Optimization Network for Matrix Inversion , 1987, NIPS.

[5]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[6]  H. Sorenson Least-squares estimation: from Gauss to Kalman , 1970, IEEE Spectrum.

[7]  Michael A. Fiddy,et al.  A neural network based matrix inversion algorithm , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[8]  Ahmed El-Rabbany,et al.  New Developments in State Estimation for INS/GPS Integrated Systems , 2006 .

[9]  Luo Fa-long,et al.  Neural network approach to computing matrix inversion , 1992 .

[10]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[11]  Michael T. Manry,et al.  Recent Developments in Multilayer Perceptron Neural Networks , 2005 .

[12]  Ibrahim I. Esat,et al.  Matrix Manipulations using Artificial Neural Networks , 2004, Trans. SDPS.

[13]  Richard M. Stanley Optimal Estimation With an Introduction to Stochastic Control , 1988 .

[14]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[15]  Michael T. Manry,et al.  A neural network training algorithm utilizing multiple sets of linear equations , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[16]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[17]  K.M. Curtis,et al.  Dynamically pruning output weights in an expanding multilayer perceptron neural network , 1997, Proceedings of 13th International Conference on Digital Signal Processing.

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[20]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .