EIGENFUNCTIONS AND NODAL SETS

This is a survey of recent results on eigenfunctions of the Laplacian on compact Riemannian manifolds and their nodal sets. It is the write-up of my talk at JDG 2011.

[1]  G. Szegö,et al.  Inequalities for the zeros of Legendre polynomials and related functions , 1936 .

[2]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[3]  The extremal values of Legendre polynomials and of certain related functions , 1950 .

[4]  G. Szegö On the relative extrema of Legendre polynomials , 1950 .

[5]  L. Bers Local behavior of solutions of general linear elliptic equations , 1955 .

[6]  Arke Pleijel,et al.  Remarks on courant's nodal line theorem , 1956 .

[7]  H. Fédérer Geometric Measure Theory , 1969 .

[8]  H. Schubert,et al.  O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .

[9]  R. Baxter Potts model at the critical temperature , 1973 .

[10]  Karen K. Uhlenbeck Generic Properties of Eigenfunctions , 1976 .

[11]  Shiu-yuen Cheng Eigenfunctions and nodal sets , 1976 .

[12]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[13]  Hans Lewy On the mininum number of domains in which the nodal lines of spherical harmonics divide the sphere , 1977 .

[14]  Jochen Brüning,et al.  Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators , 1978 .

[15]  L. B. Monvel Convergence dans le domaine complexe des séries de fonctions propres , 1979 .

[16]  Sigurdur Helgason,et al.  Topics in Harmonic Analysis on Homogeneous Spaces , 1981 .

[17]  Shing-Tung Yau,et al.  SURVEY ON PARTIAL DIFFERENTIAL EQUATIONS IN 3 DIFFERENTIAL GEOMETRY , 1982 .

[18]  Percolation threshold of a two-dimensional continuum system , 1982 .

[19]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[20]  F. Lin,et al.  Monotonicity properties of variational integrals, ap weights and unique continuation , 1986 .

[21]  F. Lin,et al.  Unique continuation for elliptic operators: A geometric‐variational approach , 1987 .

[22]  Steve Zelditch,et al.  Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .

[23]  C. Fefferman,et al.  Nodal sets of eigenfunctions on Reimannian manifolds , 1988 .

[24]  Christopher D. Sogge,et al.  Concerning the Lp norm of spectral clusters for second-order elliptic operators on compact manifolds , 1988 .

[25]  C. Fefferman,et al.  Growth and geometry of eigenfunctions of the laplacian , 1989 .

[26]  R. Hardt,et al.  Nodal sets for solutions of elliptic equations , 1989 .

[27]  Charles Fefferman,et al.  Nodal sets for eigenfunctions of the Laplacian on surfaces , 1990 .

[28]  C. Fefferman,et al.  Nodal Sets of Eigenfunctions: Riemannian Manifolds With Boundary , 1990 .

[29]  Statistical topography. I. Fractal dimension of coastlines and number-area rule for Islands , 1991 .

[30]  L. Lempert,et al.  Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds , 1991 .

[31]  F. Lin Nodal sets of solutions of elliptic and parabolic equations , 1991 .

[32]  V. Guillemin,et al.  Grauert tubes and the homogeneous Monge-Ampère equation , 1991 .

[33]  Rui-Tao Dong Nodal sets of eigenfunctions on Riemann surfaces , 1992 .

[34]  M. Isichenko Percolation, statistical topography, and transport in random media , 1992 .

[35]  S. Zelditch Kuznecov sum formulae and Szegö limit formulae on manifolds , 1992 .

[36]  Eric Leichtnam,et al.  Ergodic properties of eigenfunctions for the Dirichlet problem , 1993 .

[37]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[38]  Lagrangians Satisfying Crofton Formulas, Radon Transforms, and Nonlocal Differentials , 1994 .

[39]  Henley,et al.  Geometrical exponents of contour loops on random Gaussian surfaces. , 1995, Physical review letters.

[40]  I. Kukavica Nodal volumes for eigenfunctions of analytic regular elliptic problems , 1995 .

[41]  F. Golse,et al.  Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds , 1996 .

[42]  S. Zelditch,et al.  Ergodicity of eigenfunctions for ergodic billiards , 1996 .

[43]  Y. Egorov,et al.  On Spectral Theory of Elliptic Operators , 1996 .

[44]  J. Leydold On the number of nodal domains of spherical harmonics , 1996 .

[45]  Christian Bär On Nodal Sets for Dirac and Laplace Operators , 1997 .

[46]  Igor Kukavica,et al.  Quantitative uniqueness for second-order elliptic operators , 1998 .

[47]  F. Lin,et al.  Geometric measure of singular sets of elliptic equations , 1998 .

[48]  Daniel Tataru,et al.  ON THE REGULARITY OF BOUNDARY TRACES FOR THE WAVE EQUATION , 1998 .

[49]  N. Nadirashvili,et al.  Eigenfunctions with few critical points , 1999 .

[50]  R. Hardt,et al.  Critical sets of solutions to elliptic equations , 1999 .

[51]  Universality and Scaling of Zeros on Symplectic Manifolds , 2000, math-ph/0002039.

[52]  Salinas,et al.  Nonlinear measures for characterizing rough surface morphologies , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  Joshua D. Neuheisel THE ASYMPTOTIC DISTRIBUTION OF NODAL SETS ON SPHERES , 2000 .

[54]  Universality and scaling of correlations between zeros on complex manifolds , 1999, math-ph/9904020.

[55]  L. Lempert,et al.  The Tangent Bundle of an Almost Complex Manifold , 2001, Canadian Mathematical Bulletin.

[56]  Dmitry Jakobson,et al.  Geometric properties of eigenfunctions , 2001 .

[57]  Quantum Ergodicity of Boundary Values of Eigenfunctions , 2002, math/0211140.

[58]  E. Bogomolny,et al.  Percolation model for nodal domains of chaotic wave functions. , 2001, Physical review letters.

[59]  Uzy Smilansky,et al.  Nodal domains statistics: a criterion for quantum chaos. , 2001, Physical review letters.

[60]  F. Y. Wu Percolation and the Potts Model , 2004 .

[61]  What is wrong with the Hausdorff measure in Finsler spaces , 2004, math/0408413.

[62]  The morphology of nodal lines-random waves versus percolation , 2004, nlin/0407012.

[63]  Critical points and supersymmetric vacua, II: Asymptotics and extremal metrics , 2004, math/0406089.

[64]  Leonid Polterovich,et al.  Sign and area in nodal geometry of Laplace eigenfunctions , 2004 .

[65]  P. Gérard,et al.  Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds , 2005, math/0506394.

[66]  N. Burq Quantum Ergodicity of Boundary Values of Eigenfunctions: A Control Theory Approach , 2003, Canadian Mathematical Bulletin.

[67]  S. Zelditch Complex zeros of real ergodic eigenfunctions , 2005, math/0505513.

[68]  The Morse–Witten complex via dynamical systems , 2004, math/0411465.

[69]  Martin Reuter,et al.  Laplace spectra for shape recognition , 2006 .

[70]  Dmitry Jakobson,et al.  On nodal sets and nodal domains on \mathbf{S^2} and {\mathbb{R}}^{\mathbf{2}}@@@Sur les ensembles nodaux et les domaines nodaux sur S^2 et {\mathbb{R}}^2 , 2007 .

[71]  E. Bogomolny,et al.  Random wavefunctions and percolation , 2007, 0708.4335.

[72]  E. Bogomolny,et al.  SLE description of the nodal lines of random wavefunctions , 2006, nlin/0609017.

[73]  S. Zelditch,et al.  Counting Nodal Lines Which Touch the Boundary of an Analytic Domain , 2007, 0710.0101.

[74]  Fedor Nazarov,et al.  On the number of nodal domains of random spherical harmonics , 2007, 0706.2409.

[75]  Geometric characterization of nodal domains: the area-to-perimeter ratio , 2006, nlin/0612040.

[76]  Qing Han Nodal Sets of Harmonic Functions , 2007 .

[77]  Complex Zeros of Eigenfunctions of 1D Schrödinger Operators , 2007, math-ph/0703028.

[78]  Leonid Polterovich,et al.  Nodal inequalities on surfaces , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.

[79]  J. Paiva,et al.  Gelfand transforms and Crofton formulas , 2008 .

[80]  D. Mangoubi On the Inner Radius of a Nodal Domain , 2008, Canadian Mathematical Bulletin.

[81]  I. Polterovich Pleijel's nodal domain theorem for free membranes , 2008, 0805.1553.

[82]  S. Zelditch Real and complex zeros of Riemannian random waves , 2008, 0803.4334.

[83]  S. Zelditch,et al.  About the Blowup of Quasimodes on Riemannian Manifolds , 2009, 0908.0688.

[84]  On the distribution of the nodal sets of random spherical harmonics , 2008, 0805.2768.

[85]  Martin Reuter,et al.  Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions , 2010, International Journal of Computer Vision.

[86]  S. Zelditch LOCAL AND GLOBAL ANALYSIS OF EIGENFUNCTIONS ON RIEMANNIAN MANIFOLDS , 2009 .

[87]  Rui Hu Lp norm estimates of eigenfunctions restricted to submanifolds , 2009 .

[88]  D. Jakobson,et al.  Tubular neighborhoods of nodal sets and diophantine approximation , 2007, 0707.4045.

[89]  Christopher D. Sogge,et al.  Kakeya-Nikodym averages and $L^p$-norms of eigenfunctions , 2009, 0907.4827.

[90]  THE VOLUME OF A LOCAL NODAL DOMAIN , 2008, 0806.3327.

[91]  L. Nicolaescu Critical sets of random smooth functions on products of spheres , 2010, 1008.5085.

[92]  Jason Miller Universality for SLE(4) , 2010, 1010.1356.

[93]  S. Zelditch,et al.  Lower bounds on the Hausdorff measure of nodal sets II , 2010, 1009.3573.

[94]  D. Mangoubi A Remark on Recent Lower Bounds for Nodal Sets , 2010, 1010.4579.

[95]  Laurent Bakri Critical set of eigenfunctions of the Laplacian , 2010, 1008.1699.

[96]  Junehyuk Jung Zeros of eigenfunctions on hyperbolic surfaces lying on a curve , 2011 .

[97]  S. Zelditch,et al.  Quantum Ergodic Restriction Theorems: Manifolds Without Boundary , 2011, 1104.4531.

[98]  A natural lower bound for the size of nodal sets , 2011, 1107.3440.

[99]  Lower bounds for volumes of nodal sets: an improvement of a result of Sogge-Zelditch , 2011, 1107.0092.

[100]  On eigenfunction restriction estimates and $L^4$-bounds for compact surfaces with nonpositive curvature , 2011, 1108.2726.

[101]  J. Bourgain,et al.  On the nodal sets of toral eigenfunctions , 2010, 1003.1743.

[102]  L. Nicolaescu Critical sets of random smooth functions on compact manifolds , 2011, 1101.5990.

[103]  G. Lu,et al.  A geometric covering lemma and nodal sets of eigenfunctions , 2011 .

[104]  Lower Bounds for Nodal Sets of Dirichlet and Neumann Eigenfunctions , 2011, 1110.6885.

[105]  T. Colding,et al.  Lower Bounds for Nodal Sets of Eigenfunctions , 2010, 1009.4156.

[106]  S. Zelditch Ergodicity and intersections of nodal sets and geodesics on real analytic surfaces , 2012, 1210.0834.

[107]  S. Zelditch Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I , 2011, 1107.0463.

[108]  S. Zelditch,et al.  Quantum ergodic restriction for Cauchy data: Interior QUE and restricted QUE , 2012, 1205.0286.

[109]  M. Stelzner Letter to the Author , 2012, Ethiopian journal of health sciences.

[110]  S. Zelditch,et al.  Concerning the L4 norms of typical eigenfunctions on compact surfaces , 2010, 1011.0215.

[111]  S. Dyatlov,et al.  Quantum ergodicity for restrictions to hypersurfaces , 2012, 1204.0284.

[112]  March,et al.  Gaussian beams and the propagation of singularities , 2014 .