EIGENFUNCTIONS AND NODAL SETS
暂无分享,去创建一个
[1] G. Szegö,et al. Inequalities for the zeros of Legendre polynomials and related functions , 1936 .
[2] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[3] The extremal values of Legendre polynomials and of certain related functions , 1950 .
[4] G. Szegö. On the relative extrema of Legendre polynomials , 1950 .
[5] L. Bers. Local behavior of solutions of general linear elliptic equations , 1955 .
[6] Arke Pleijel,et al. Remarks on courant's nodal line theorem , 1956 .
[7] H. Fédérer. Geometric Measure Theory , 1969 .
[8] H. Schubert,et al. O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .
[9] R. Baxter. Potts model at the critical temperature , 1973 .
[10] Karen K. Uhlenbeck. Generic Properties of Eigenfunctions , 1976 .
[11] Shiu-yuen Cheng. Eigenfunctions and nodal sets , 1976 .
[12] Michael V Berry,et al. Regular and irregular semiclassical wavefunctions , 1977 .
[13] Hans Lewy. On the mininum number of domains in which the nodal lines of spherical harmonics divide the sphere , 1977 .
[14] Jochen Brüning,et al. Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators , 1978 .
[15] L. B. Monvel. Convergence dans le domaine complexe des séries de fonctions propres , 1979 .
[16] Sigurdur Helgason,et al. Topics in Harmonic Analysis on Homogeneous Spaces , 1981 .
[17] Shing-Tung Yau,et al. SURVEY ON PARTIAL DIFFERENTIAL EQUATIONS IN 3 DIFFERENTIAL GEOMETRY , 1982 .
[18] Percolation threshold of a two-dimensional continuum system , 1982 .
[19] S. Redner,et al. Introduction To Percolation Theory , 2018 .
[20] F. Lin,et al. Monotonicity properties of variational integrals, ap weights and unique continuation , 1986 .
[21] F. Lin,et al. Unique continuation for elliptic operators: A geometric‐variational approach , 1987 .
[22] Steve Zelditch,et al. Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .
[23] C. Fefferman,et al. Nodal sets of eigenfunctions on Reimannian manifolds , 1988 .
[24] Christopher D. Sogge,et al. Concerning the Lp norm of spectral clusters for second-order elliptic operators on compact manifolds , 1988 .
[25] C. Fefferman,et al. Growth and geometry of eigenfunctions of the laplacian , 1989 .
[26] R. Hardt,et al. Nodal sets for solutions of elliptic equations , 1989 .
[27] Charles Fefferman,et al. Nodal sets for eigenfunctions of the Laplacian on surfaces , 1990 .
[28] C. Fefferman,et al. Nodal Sets of Eigenfunctions: Riemannian Manifolds With Boundary , 1990 .
[29] Statistical topography. I. Fractal dimension of coastlines and number-area rule for Islands , 1991 .
[30] L. Lempert,et al. Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds , 1991 .
[31] F. Lin. Nodal sets of solutions of elliptic and parabolic equations , 1991 .
[32] V. Guillemin,et al. Grauert tubes and the homogeneous Monge-Ampère equation , 1991 .
[33] Rui-Tao Dong. Nodal sets of eigenfunctions on Riemann surfaces , 1992 .
[34] M. Isichenko. Percolation, statistical topography, and transport in random media , 1992 .
[35] S. Zelditch. Kuznecov sum formulae and Szegö limit formulae on manifolds , 1992 .
[36] Eric Leichtnam,et al. Ergodic properties of eigenfunctions for the Dirichlet problem , 1993 .
[37] S. Yau,et al. Lectures on Differential Geometry , 1994 .
[38] Lagrangians Satisfying Crofton Formulas, Radon Transforms, and Nonlocal Differentials , 1994 .
[39] Henley,et al. Geometrical exponents of contour loops on random Gaussian surfaces. , 1995, Physical review letters.
[40] I. Kukavica. Nodal volumes for eigenfunctions of analytic regular elliptic problems , 1995 .
[41] F. Golse,et al. Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic riemannian manifolds , 1996 .
[42] S. Zelditch,et al. Ergodicity of eigenfunctions for ergodic billiards , 1996 .
[43] Y. Egorov,et al. On Spectral Theory of Elliptic Operators , 1996 .
[44] J. Leydold. On the number of nodal domains of spherical harmonics , 1996 .
[45] Christian Bär. On Nodal Sets for Dirac and Laplace Operators , 1997 .
[46] Igor Kukavica,et al. Quantitative uniqueness for second-order elliptic operators , 1998 .
[47] F. Lin,et al. Geometric measure of singular sets of elliptic equations , 1998 .
[48] Daniel Tataru,et al. ON THE REGULARITY OF BOUNDARY TRACES FOR THE WAVE EQUATION , 1998 .
[49] N. Nadirashvili,et al. Eigenfunctions with few critical points , 1999 .
[50] R. Hardt,et al. Critical sets of solutions to elliptic equations , 1999 .
[51] Universality and Scaling of Zeros on Symplectic Manifolds , 2000, math-ph/0002039.
[52] Salinas,et al. Nonlinear measures for characterizing rough surface morphologies , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[53] Joshua D. Neuheisel. THE ASYMPTOTIC DISTRIBUTION OF NODAL SETS ON SPHERES , 2000 .
[54] Universality and scaling of correlations between zeros on complex manifolds , 1999, math-ph/9904020.
[55] L. Lempert,et al. The Tangent Bundle of an Almost Complex Manifold , 2001, Canadian Mathematical Bulletin.
[56] Dmitry Jakobson,et al. Geometric properties of eigenfunctions , 2001 .
[57] Quantum Ergodicity of Boundary Values of Eigenfunctions , 2002, math/0211140.
[58] E. Bogomolny,et al. Percolation model for nodal domains of chaotic wave functions. , 2001, Physical review letters.
[59] Uzy Smilansky,et al. Nodal domains statistics: a criterion for quantum chaos. , 2001, Physical review letters.
[60] F. Y. Wu. Percolation and the Potts Model , 2004 .
[61] What is wrong with the Hausdorff measure in Finsler spaces , 2004, math/0408413.
[62] The morphology of nodal lines-random waves versus percolation , 2004, nlin/0407012.
[63] Critical points and supersymmetric vacua, II: Asymptotics and extremal metrics , 2004, math/0406089.
[64] Leonid Polterovich,et al. Sign and area in nodal geometry of Laplace eigenfunctions , 2004 .
[65] P. Gérard,et al. Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds , 2005, math/0506394.
[66] N. Burq. Quantum Ergodicity of Boundary Values of Eigenfunctions: A Control Theory Approach , 2003, Canadian Mathematical Bulletin.
[67] S. Zelditch. Complex zeros of real ergodic eigenfunctions , 2005, math/0505513.
[68] The Morse–Witten complex via dynamical systems , 2004, math/0411465.
[69] Martin Reuter,et al. Laplace spectra for shape recognition , 2006 .
[70] Dmitry Jakobson,et al. On nodal sets and nodal domains on \mathbf{S^2} and {\mathbb{R}}^{\mathbf{2}}@@@Sur les ensembles nodaux et les domaines nodaux sur S^2 et {\mathbb{R}}^2 , 2007 .
[71] E. Bogomolny,et al. Random wavefunctions and percolation , 2007, 0708.4335.
[72] E. Bogomolny,et al. SLE description of the nodal lines of random wavefunctions , 2006, nlin/0609017.
[73] S. Zelditch,et al. Counting Nodal Lines Which Touch the Boundary of an Analytic Domain , 2007, 0710.0101.
[74] Fedor Nazarov,et al. On the number of nodal domains of random spherical harmonics , 2007, 0706.2409.
[75] Geometric characterization of nodal domains: the area-to-perimeter ratio , 2006, nlin/0612040.
[76] Qing Han. Nodal Sets of Harmonic Functions , 2007 .
[77] Complex Zeros of Eigenfunctions of 1D Schrödinger Operators , 2007, math-ph/0703028.
[78] Leonid Polterovich,et al. Nodal inequalities on surfaces , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.
[79] J. Paiva,et al. Gelfand transforms and Crofton formulas , 2008 .
[80] D. Mangoubi. On the Inner Radius of a Nodal Domain , 2008, Canadian Mathematical Bulletin.
[81] I. Polterovich. Pleijel's nodal domain theorem for free membranes , 2008, 0805.1553.
[82] S. Zelditch. Real and complex zeros of Riemannian random waves , 2008, 0803.4334.
[83] S. Zelditch,et al. About the Blowup of Quasimodes on Riemannian Manifolds , 2009, 0908.0688.
[84] On the distribution of the nodal sets of random spherical harmonics , 2008, 0805.2768.
[85] Martin Reuter,et al. Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions , 2010, International Journal of Computer Vision.
[86] S. Zelditch. LOCAL AND GLOBAL ANALYSIS OF EIGENFUNCTIONS ON RIEMANNIAN MANIFOLDS , 2009 .
[87] Rui Hu. Lp norm estimates of eigenfunctions restricted to submanifolds , 2009 .
[88] D. Jakobson,et al. Tubular neighborhoods of nodal sets and diophantine approximation , 2007, 0707.4045.
[89] Christopher D. Sogge,et al. Kakeya-Nikodym averages and $L^p$-norms of eigenfunctions , 2009, 0907.4827.
[90] THE VOLUME OF A LOCAL NODAL DOMAIN , 2008, 0806.3327.
[91] L. Nicolaescu. Critical sets of random smooth functions on products of spheres , 2010, 1008.5085.
[92] Jason Miller. Universality for SLE(4) , 2010, 1010.1356.
[93] S. Zelditch,et al. Lower bounds on the Hausdorff measure of nodal sets II , 2010, 1009.3573.
[94] D. Mangoubi. A Remark on Recent Lower Bounds for Nodal Sets , 2010, 1010.4579.
[95] Laurent Bakri. Critical set of eigenfunctions of the Laplacian , 2010, 1008.1699.
[96] Junehyuk Jung. Zeros of eigenfunctions on hyperbolic surfaces lying on a curve , 2011 .
[97] S. Zelditch,et al. Quantum Ergodic Restriction Theorems: Manifolds Without Boundary , 2011, 1104.4531.
[98] A natural lower bound for the size of nodal sets , 2011, 1107.3440.
[99] Lower bounds for volumes of nodal sets: an improvement of a result of Sogge-Zelditch , 2011, 1107.0092.
[100] On eigenfunction restriction estimates and $L^4$-bounds for compact surfaces with nonpositive curvature , 2011, 1108.2726.
[101] J. Bourgain,et al. On the nodal sets of toral eigenfunctions , 2010, 1003.1743.
[102] L. Nicolaescu. Critical sets of random smooth functions on compact manifolds , 2011, 1101.5990.
[103] G. Lu,et al. A geometric covering lemma and nodal sets of eigenfunctions , 2011 .
[104] Lower Bounds for Nodal Sets of Dirichlet and Neumann Eigenfunctions , 2011, 1110.6885.
[105] T. Colding,et al. Lower Bounds for Nodal Sets of Eigenfunctions , 2010, 1009.4156.
[106] S. Zelditch. Ergodicity and intersections of nodal sets and geodesics on real analytic surfaces , 2012, 1210.0834.
[107] S. Zelditch. Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I , 2011, 1107.0463.
[108] S. Zelditch,et al. Quantum ergodic restriction for Cauchy data: Interior QUE and restricted QUE , 2012, 1205.0286.
[109] M. Stelzner. Letter to the Author , 2012, Ethiopian journal of health sciences.
[110] S. Zelditch,et al. Concerning the L4 norms of typical eigenfunctions on compact surfaces , 2010, 1011.0215.
[111] S. Dyatlov,et al. Quantum ergodicity for restrictions to hypersurfaces , 2012, 1204.0284.
[112] March,et al. Gaussian beams and the propagation of singularities , 2014 .