The thermorheologically complex material

Abstract An approximate quantum mechanical description of molecular energy transitions leads to fractional order time derivative descriptions of linear viscoelastic stress relaxation in polymers. The resulting fractional calculus stress-strain constitutive laws are mathematically compact and suitable for rheological and engineering analyses. The mathematical form of the models suggests a modification to the thermorheologically simple material that enables the description of temperature-dependent changes to the shape of curves representing a material's modulus in the transition region. The fractional calculus models are seen to be extensions of the traditional exponential models of stress relaxation.

[1]  Michael F. Shlesinger,et al.  Defect-diffusion models of relaxation , 1987 .

[2]  Ronald L. Bagley,et al.  Power law and fractional calculus model of viscoelasticity , 1989 .

[3]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[4]  V. O. Shestopal,et al.  The estimation of column creep buckling durability from the initial stages of creep , 1984 .

[5]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .

[6]  Michael F. Shlesinger,et al.  Analogs of renormalization group transformations in random processes , 1981 .

[7]  W. Smit,et al.  Rheological models containing fractional derivatives , 1970 .

[8]  M. Shlesinger,et al.  Fractal time symmetry in the glass transition , 1988 .

[9]  Peter J. Torvik,et al.  Fractional calculus in the transient analysis of viscoelastically damped structures , 1983 .

[10]  R. Koeller Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics , 1986 .

[11]  Lynn Rogers,et al.  Operators and Fractional Derivatives for Viscoelastic Constitutive Equations , 1983 .

[12]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[13]  R. Landel,et al.  Extensions of the Rouse Theory of Viscoelastic Properties to Undiluted Linear Polymers , 1955 .

[14]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[15]  R. Christensen Theory of viscoelasticity : an introduction , 1971 .

[16]  G. Mittag-Leffler,et al.  Sur la représentation analytique d’une branche uniforme d’une fonction monogène , 1901 .

[17]  Peter J. Torvik,et al.  Fractional calculus-a di erent approach to the analysis of viscoelastically damped structures , 1983 .

[18]  Edwin R. Fitzgerald,et al.  Dynamic Mechanical Properties of Polyisobutylene , 1953 .

[19]  M. L. Williams,et al.  THE STRUCTURAL ANALYSIS OF VISCOELASTIC MATERIALS , 1963 .

[20]  M. Shlesinger,et al.  Generalized Vogel law for glass-forming liquids , 1988 .

[21]  E. Wigner,et al.  Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie , 1930 .

[22]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[23]  Michele Caputo,et al.  Vibrations of an infinite plate with a frequency independent Q , 1976 .

[24]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[25]  J. Bendler,et al.  Microscopic approach to volume recovery of polymers , 1984 .