Periocular Recognition Under Unconstrained Image Capture Distances

[1]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[2]  Juan E. Tapia,et al.  Sex-Classification from Cell-Phones Periocular Iris Images , 2019, Selfie Biometrics.

[3]  Andrew Beng Jin Teoh,et al.  Periocular Recognition in the Wild with Orthogonal Combination of Local Binary Coded Pattern in Dual-stream Convolutional Neural Network , 2019, 2019 International Conference on Biometrics (ICB).

[4]  Fernando Alonso-Fernandez,et al.  Periocular Recognition Using CNN Features Off-the-Shelf , 2018, 2018 International Conference of the Biometrics Special Interest Group (BIOSIG).

[5]  Arun Ross,et al.  Handbook of Biometrics , 2007 .

[6]  Tony Thomas,et al.  Periocular Recognition Under Unconstrained Conditions Using CNN-Based Super-Resolution , 2019 .

[7]  D. Aju,et al.  Methods of Increasing Spatial Resolution of Digital Images with Minimum Detail Loss and its Applications , 2009, 2009 Fifth International Conference on Image and Graphics.

[8]  Ajay Kumar,et al.  Accurate Periocular Recognition Under Less Constrained Environment Using Semantics-Assisted Convolutional Neural Network , 2017, IEEE Transactions on Information Forensics and Security.

[9]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Hugo Proença,et al.  Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks , 2018, IEEE Transactions on Information Forensics and Security.

[12]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[13]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[14]  Kyoung Mu Lee,et al.  Accurate Image Super-Resolution Using Very Deep Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Anjany Sekuboyina,et al.  Multi-level Activation for Segmentation of Hierarchically-nested Classes , 2018, ECCV Workshops.

[16]  Arun Ross,et al.  Periocular Biometrics in the Visible Spectrum , 2011, IEEE Transactions on Information Forensics and Security.

[17]  Anil K. Jain,et al.  Periocular biometrics in the visible spectrum: A feasibility study , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[18]  Fernando Alonso-Fernandez,et al.  A survey on periocular biometrics research , 2016, Pattern Recognit. Lett..

[19]  Chun-Wei Tan,et al.  Towards Online Iris and Periocular Recognition Under Relaxed Imaging Constraints , 2013, IEEE Transactions on Image Processing.

[20]  Sridha Sridharan,et al.  Super-resolution for biometrics: A comprehensive survey , 2018, Pattern Recognit..

[21]  Sambit Bakshi,et al.  A novel phase-intensive local pattern for periocular recognition under visible spectrum , 2015 .

[22]  Jaewoo Park,et al.  Periocular Recognition in the Wild With Generalized Label Smoothing Regularization , 2020, IEEE Signal Processing Letters.

[23]  Vijayan K. Asari,et al.  The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches , 2018, ArXiv.

[24]  Luís A. Alexandre,et al.  The UBIRIS.v2: A Database of Visible Wavelength Iris Images Captured On-the-Move and At-a-Distance , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Zhu Li,et al.  Multi-frame Super Resolution for Ocular Biometrics , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).