2 Port-Hamiltonian systems 2 . 1 From the Euler-Lagrange and Hamiltonian equations to port-Hamiltonian systems

It is shown how port-based modeling of lumped-parameter complex physical systems (multi-body systems, electrical circuits, electromechanical systems, ..) naturally leads to a geometrically defined class of systems, called port-Hamiltonian systems. The structural properties of these systems are discussed, in particular the existence of Casimir functions and their implications for stabilty. It is shown how a power-conserving interconnection of port-Hamiltonian systems defines another port-Hamiltonian system, and how this may be used for control by shaping the internal energy. Also implicit systems are incorporated in this framework. The link with H∞ control is established through the scattering representation. Extensions to the distributed-parameter case are briefly indicated.

[1]  Arjan van der Schaft,et al.  Hamiltonian formulation of bond graphs , 2003 .

[2]  A. Weinstein Local structure of Poisson manifolds , 2021, Lectures on Poisson Geometry.

[3]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[4]  Diana Bohm,et al.  L2 Gain And Passivity Techniques In Nonlinear Control , 2016 .

[5]  Suguru Arimoto,et al.  A New Feedback Method for Dynamic Control of Manipulators , 1981 .

[6]  S. Andreotti,et al.  Geometric scattering in tele-manipulation of port controlled Hamiltonian systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[7]  A. Schaft,et al.  Hamiltonian formulation of planar beams , 2003 .

[8]  A. Schaft,et al.  System-theoretic properties of port-controlled Hamiltonian systems , 1993 .

[9]  G. Golo,et al.  Approximation of the Telegrapher's equations , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[10]  A. Schaft,et al.  The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .

[11]  Romeo Ortega,et al.  An energy-based derivation of lyapunov functions for forced systems with application to stabilizing control , 1999 .

[12]  van der Arjan Schaft,et al.  On the Hamiltonian Formulation of Nonholonomic Mechanical Systems , 1994 .

[13]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[14]  A. Schaft,et al.  Port controlled Hamiltonian representation of distributed parameter systems , 2000 .

[15]  Arjan van der Schaft,et al.  Interconnected mechanical systems, part I: geometry of interconnection and implicit Hamiltonian systems , 1997 .

[16]  M. Dalsmo,et al.  Mathematical structures in the network representation of energy-conserving physical systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[17]  Toshiharu Sugie,et al.  Stabilization of a class of Hamiltonian systems with nonholonomic constraints via canonical transformations , 1999, 1999 European Control Conference (ECC).

[18]  Romeo Ortega,et al.  On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping , 2001 .

[19]  A. Schaft,et al.  On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems , 1999 .

[20]  A. Schaft,et al.  Interconnection of systems: the network paradigm , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[21]  Arjan van der Schaft,et al.  Symmetry and reduction in implicit generalized Hamiltonian systems , 1999 .

[22]  Stefano Stramigioli,et al.  From differentiable manifold to interactive robot control , 1998 .

[23]  A. Schaft,et al.  A Hamiltonian formulation of the Timoshenko beam , 2002 .

[24]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[25]  Arjan van der Schaft,et al.  A Hamiltonian viewpoint in the modelling of switching power converters , 1999 .

[26]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[27]  A. J. van der Schaft,et al.  Implicit Hamiltonian Systems with Symmetry , 1998 .

[28]  Irene Dorfman,et al.  Dirac Structures and Integrability of Nonlinear Evolution Equations , 1993 .

[29]  Alberto Isidori,et al.  Nonlinear control in the Year 2000 , 2001 .

[30]  P. Moylan,et al.  The stability of nonlinear dissipative systems , 1976 .

[31]  Singiresu S Rao,et al.  A Comparative Study of Evidence Theories in the Modeling, Analysis, and Design of Engineering Systems , 2013 .

[32]  Bernhard Maschke,et al.  An intrinsic Hamiltonian formulation of network dynamics: Non-standard Poisson structures and gyrators , 1992 .

[33]  Arjan van der Schaft,et al.  Passive output feedback and port interconnection , 1998 .

[34]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[35]  P. V. Remoortere Physical systems theory in terms of bond graphs : P.C. Breedveld: Vakgroep Besturingsystemen en Computertechniek, THT, Afdeling Electrotechniek, Postbus 217, 7500 AE Enschede, The Netherlands. 1984, 200 pages, ISBN 90-9000599-4 , 1984 .

[36]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[37]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[38]  Arjan van der Schaft,et al.  Interconnected mechanical systems, part II: the dynamics of spatial mechanical networks , 1997 .

[39]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[40]  A. Schaft,et al.  An intrinsic Hamiltonian formulation of the dynamics of LC-circuits , 1995 .

[41]  A. J. Schaft,et al.  Stabilization of Hamiltonian systems , 1986 .

[42]  Stefano Stramigioli,et al.  A Hamiltonian formulation of the dynamics of spatial mechanisms using Lie Groups and Screw Theory , 2000 .

[43]  Arjan van der Schaft,et al.  Screw-vector bond graphs for the kinestatic and dynamic modeling of multibody systems , 1994 .

[44]  Harry L. Trentelman,et al.  The mathematics of systems and control: from intelligent control to behavioral systems , 1999 .

[45]  Naomi Ehrich Leonard,et al.  Matching and stabilization by the method of controlled Lagrangians , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[46]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[47]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[48]  Arjan van der Schaft,et al.  Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[49]  Hans Zwart,et al.  Boundary Control Systems , 2020, Introduction to Infinite-Dimensional Systems Theory.

[50]  Bernhard Maschke,et al.  Mathematical Modeling of Constrained Hamiltonian Systems , 1995 .

[51]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[52]  Andreas Kugi,et al.  Control of mechanical structures by piezoelectric actuators and sensors , 1999 .

[53]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[54]  A. J. van der Schaft,et al.  Port-controlled Hamiltonian Systems:Modelling Origins and System-Theoretic Properties , 1992 .

[55]  Arjan van der Schaft Interconnection and geometry , 1999 .