Architectures for Optical Neural Networks

Artificial neural networks are parallel processing systems which have applications in speech and pattern recognition (Rumelhart and McCelland, 1986; Prager et al., 1986; Lippmann, 1987; Szu, 1986; Geman and Geman, 1984; Luttrell, 1985; Widrow et al. 1988), function optimization (Geman and Geman, 1984; Barhen et al., 1987; Hinton et al., 1984; Kirkpatrick et al., 1983; Hopfield and Tank, 1986), robotics (Barhen et al., 1987), and control (Psaltis et al., 1988a). They consist of a set of identical, nonlinear processing elements, generically known as neurons, which are linked together to form a highly interconnected network. Information is represented by the pattern of activity of the neurons and data are stored by distributing them throughout the network’s connections. This is done by weighting the links with positive and negative values to indicate the effect that one neuron has on another. This makes the system fault tolerant since each neuron is connected to many others and each weight represents the ‘average’ stimulus over the data set, so the loss of a few connections does not drastically affect the operation of the network.

[1]  A. Yariv,et al.  Associative memories based on message-bearing optical modes in phase-conjugate resonators. , 1986, Optics letters.

[2]  D. G. Vass,et al.  Evolutionary development of advanced liquid crystal spatial light modulators. , 1989, Applied optics.

[3]  H. J. White,et al.  Digital and analogue holographic associative memories , 1988 .

[4]  J Shamir,et al.  Massive holographic interconnection networks and their limitations. , 1989, Applied optics.

[5]  Demetri Psaltis,et al.  Higher order associative memories and their optical implementations , 1988, Neural Networks.

[6]  N H Farhat,et al.  Optoelectronic analogs of self-programming neural nets: architecture and methodologies for implementing fast stochastic learning by simulated annealing. , 1987, Applied optics.

[7]  J N Lee,et al.  Optical implementations of associative networks with versatile adaptive learning capabilities. , 1987, Applied optics.

[8]  C C Guest,et al.  Designs and devices for optical bidirectional associative memories. , 1987, Applied optics.

[9]  R A Athale,et al.  Optical implementation of associative memory with controlled nonlinearity in the correlation domain. , 1986, Optics letters.

[10]  S. Watanabe,et al.  Terawatt XeCl discharge laser system. , 1988, Optics letters.

[11]  E G Paek,et al.  Holographic implementation of a learning machine based on a multicategory perceptron algorithm. , 1989, Optics letters.

[12]  D Psaltis,et al.  Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. , 1985, Optics letters.

[13]  Demetri Psaltis,et al.  Shift-Invariant Optical Associative Memories , 1987 .

[14]  Mark Derthick,et al.  Variations on the Boltzmann Machine Learning Algorithm , 1984 .

[15]  T. D. Harrison,et al.  Boltzmann machines for speech recognition , 1986 .

[16]  S Y Lee,et al.  Optical implementation of the Hopfield model for two-dimensional associative memory. , 1988, Optics letters.

[17]  Neil Collings,et al.  An amorphous silicon/chiral smectic spatial light modulator , 1988 .

[18]  S Y Lee,et al.  Optical implementation of quadratic associative memory with outer-product storage. , 1988, Optics letters.

[19]  A. Sideris,et al.  A multilayered neural network controller , 1988, IEEE Control Systems Magazine.

[20]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[21]  H J White,et al.  Holographic implementation of a Hopfield model with discrete weightings. , 1988, Applied optics.

[22]  J. Bagshaw,et al.  The Effect Of Read/Write Isolation On The Resolution Of The Marconi Spatial Light Modulator , 1988, Defense, Security, and Sensing.

[23]  Harold H. Szu Three Layers Of Vector Outer Product Neural Networks For Optical Pattern Recognition , 1986, Other Conferences.

[24]  R.A. Athale,et al.  Optical processing using outer-product concepts , 1984, Proceedings of the IEEE.

[25]  B H Soffer,et al.  Associative holographic memory with feedback using phase-conjugate mirrors. , 1986, Optics letters.

[26]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory, Third Edition , 1989, Springer Series in Information Sciences.

[27]  Kyusun Choi,et al.  Optical disk based neural network. , 1989, Applied optics.

[28]  Harrison H. Barrett,et al.  Optical Implementations In Boltzmann Machines , 1987 .

[29]  BART KOSKO,et al.  Bidirectional associative memories , 1988, IEEE Trans. Syst. Man Cybern..

[30]  Francis T. S. Yu,et al.  Holographic Associative Memory System Using A Thresholding Microchannel Spatial Light Modulator , 1989 .

[31]  D. Brady,et al.  Adaptive optical networks using photorefractive crystals. , 1988, Applied optics.

[32]  F. Micheron,et al.  Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20 , 1977 .

[33]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[34]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[36]  A A Friesem,et al.  All-optical neural network with inhibitory neurons. , 1989, Optics letters.

[37]  R J Marks Ii,et al.  Optical-processor architectures for alternating-projection neural networks. , 1988, Optics letters.

[38]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[39]  K. Johnson,et al.  Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing. , 1989, Applied optics.

[40]  Amnon Yariv,et al.  Phase Conjugate Mirrors As Thresholding Elements For Optical Associative Memories , 1987, Other Conferences.

[41]  J Ohta,et al.  Optical implementation of large-scale neural networks using a time-division-multiplexing technique. , 1990, Optics letters.

[42]  D. Psaltis,et al.  Holography in artificial neural networks , 1990, Nature.

[43]  K Wagner,et al.  Multilayer optical learning networks. , 1987, Applied optics.

[44]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[45]  J. J. Amodei,et al.  Coupled‐Wave Analysis of Holographic Storage in LiNbO3 , 1972 .

[46]  Joseph W. Goodman,et al.  Application Of Optical Communication Technology To Optical Information Processing , 1980, Other Conferences.

[47]  A Von Lehmen,et al.  Compact and ultrafast holographic memory using a surface-emitting microlaser diode array. , 1990, Optics letters.

[48]  M. Tackitt,et al.  Continuous-time optical neural network associative memory. , 1989, Optics letters.

[49]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Thomas S. Huang,et al.  Digital Holography , 2003 .

[51]  Bernard Widrow,et al.  Layered neural nets for pattern recognition , 1988, IEEE Trans. Acoust. Speech Signal Process..

[52]  N. Farhat Optoelectronic neural networks and learning machines , 1989, IEEE Circuits and Devices Magazine.

[53]  P. A. Penz,et al.  Deformable mirror device spatial light modulators and their applicability to optical neural networks. , 1989, Applied optics.

[54]  C C Guest,et al.  Computer generated holographic optical elements for optical interconnection of very large scale integrated circuits. , 1987, Applied optics.

[55]  D G Bounds,et al.  A statistical mechanical study of Boltzmann machines , 1987 .

[56]  D. S. McKenzie,et al.  The random bond Ising model on the Bethe lattice , 1986 .

[57]  J Barhen,et al.  Optimization of the computational load of a hypercube supercomputer onboard a mobile robot. , 1987, Applied optics.

[58]  H Friedmann,et al.  Backpropagating neurons from bichromatic interaction with a three-level system. , 1989, Applied optics.

[59]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[60]  Brian S. Wherrett,et al.  Optical computing : proceedings of the Thirty-Fourth Scottish Universities Summer School in Physics, Heriot-Watt University, Edinburgh, August 1988 , 1989 .

[61]  T Y Chang,et al.  Real-time optical image subtraction using dynamic holographic interference in photorefractive media. , 1988, Optics letters.

[62]  E G Paek,et al.  Optoelectronic chip implementation of a quadratic associative memory. , 1990, Optics letters.

[63]  M A Neifeld,et al.  Optical memory disks in optical information processing. , 1990, Applied optics.

[64]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[65]  Paul K. L. Yu,et al.  System Issues Relating To Laser Diode Requirements For VLSI Holographic Optical Interconnects , 1989 .

[66]  T. Hall,et al.  The photorefractive effect—a review , 1985 .