Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction

A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology.

[1]  G. Abadal,et al.  Monolithic CMOS MEMS Oscillator Circuit for Sensing in the Attogram Range , 2008, IEEE Electron Device Letters.

[2]  M. Roukes,et al.  Gas sensors based on gravimetric detection—A review , 2011 .

[3]  M. Roukes,et al.  VLSI silicon multi-gas analyzer coupling gas chromatography and NEMS detectors , 2011, 2011 International Electron Devices Meeting.

[4]  J. Lahann,et al.  Fully monolithic CMOS nickel micromechanical resonator oscillator , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[5]  J.T.M. van Beek,et al.  A 10MHz piezoresistive MEMS resonator with high Q , 2006, 2006 IEEE International Frequency Control Symposium and Exposition.

[6]  G. Abadal,et al.  Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies , 2009 .

[7]  G.K. Fedder,et al.  On-Chip High Quality Factor CMOS-MEMS Silicon-Fin Resonators , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[8]  J. Richter,et al.  Piezoresistive effect in top-down fabricated silicon nanowires , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[9]  Chi-Hang Chin,et al.  Capacitively-driven and piezoresistively-sensed CMOS-MEMS resonators , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[10]  Jordi Llobet,et al.  High-sensitivity linear piezoresistive transduction for nanomechanical beam resonators , 2014, Nature Communications.

[11]  J. L. Muñoz-Gamarra,et al.  Exploitation of non-linearities in CMOS-NEMS electrostatic resonators for mechanical memories , 2013 .

[12]  M. Roukes,et al.  Single-protein nanomechanical mass spectrometry in real time , 2012, Nature nanotechnology.

[13]  Joshua E.-Y. Lee,et al.  Parasitic feedthrough cancellation techniques for enhanced electrical characterization of electrostatic microresonators , 2009 .

[14]  Peidong Yang,et al.  Self-transducing silicon nanowire electromechanical systems at room temperature. , 2008, Nano letters.

[15]  A. Bachtold,et al.  Ultrasensitive mass sensing with a nanotube electromechanical resonator. , 2008, Nano letters.

[16]  Weileun Fang,et al.  A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits , 2011 .

[17]  Weileun Fang,et al.  VHF CMOS-MEMS oxide resonators with Q > 10,000 , 2012, 2012 IEEE International Frequency Control Symposium Proceedings.

[18]  A. Boisen,et al.  Cantilever-like micromechanical sensors , 2011 .

[19]  J.T.M. van Beek,et al.  Scalable 1.1 GHz fundamental mode piezo-resistive silicon MEMS resonator , 2007, 2007 IEEE International Electron Devices Meeting.

[20]  Robert Puers,et al.  A review of MEMS oscillators for frequency reference and timing applications , 2011 .

[21]  Wenzhe Zhou,et al.  CMOS-Integrated RF MEMS Resonators , 2010, Journal of Microelectromechanical Systems.

[22]  M. Roukes,et al.  Large-scale integration of nanoelectromechanical systems for gas sensing applications. , 2012, Nano letters.

[23]  M. Roukes,et al.  Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.