Nonstatistical Dopant Distribution of Ln3+-Doped NaGdF4 Nanoparticles

Oleate-stabilized NaGdF4 nanoparticles codoped with 20% Y3+ and 5% Tb3+ (NaGdF4:Y,Tb), with 20% Nd3+ (NaGdF4:Nd), and with 20% Tb3+ (NaGdF4:Tb) were prepared in organic medium. The distribution of dopant ions was studied using synchrotron radiation X-ray photoelectron spectroscopy along with X-ray powder diffractometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and luminescence spectroscopy. Results show that these nanoparticles do not have the intended statistical dopant distribution despite the fact that different synthesis procedures and dopant ions with different ionic radii were used. NaGdF4:Y,Tb nanoparticles have a subtle gradient structure with Gd3+ more concentrated toward the center and Y3+ more concentrated toward the surface of the nanoparticles. NaGdF4:Nd nanoparticles have a steep gradient structure with Gd3+ more concentrated toward the center and Nd3+ more concentrated toward the surface of the nanoparticles. Even NaGdF4:Tb nanoparticles have a steep gradient ...

[1]  Yang Yang,et al.  High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. , 2011, Biomaterials.

[2]  Qian Liu,et al.  18F-Labeled magnetic-upconversion nanophosphors via rare-Earth cation-assisted ligand assembly. , 2011, ACS nano.

[3]  F. V. Veggel,et al.  Analysis of the Shell Thickness Distribution on NaYF4/NaGdF4 Core/Shell Nanocrystals by EELS and EDS , 2011 .

[4]  Melissa L. Hill,et al.  Polymer-Stabilized Lanthanide Fluoride Nanoparticle Aggregates as Contrast Agents for Magnetic Resonance Imaging and Computed Tomography , 2010 .

[5]  N. J. Johnson,et al.  Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting beta-NaYF(4):Yb(3+)/Er(3+) nanoparticles. , 2010, Nanoscale.

[6]  Taeghwan Hyeon,et al.  Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent , 2009 .

[7]  F. V. van Veggel,et al.  Hard proof of the NaYF(4)/NaGdF(4) nanocrystal core/shell structure. , 2009, Journal of the American Chemical Society.

[8]  A. Speghini,et al.  Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+−Yb3+ and Eu3+−Yb3+ , 2009 .

[9]  N. J. Johnson,et al.  Upconverting Lanthanide-Doped NaYF4−PMMA Polymer Composites Prepared by in Situ Polymerization , 2009 .

[10]  Tymish Y. Ohulchanskyy,et al.  Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals , 2009 .

[11]  Xiaogang Liu,et al.  Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. , 2009, Chemical Society reviews.

[12]  Louis A. Cuccia,et al.  Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles , 2009 .

[13]  Shan Jiang,et al.  Multicolor Core/Shell‐Structured Upconversion Fluorescent Nanoparticles , 2008 .

[14]  Zhigang Chen,et al.  Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels , 2008 .

[15]  Tymish Y. Ohulchanskyy,et al.  High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. , 2008, Nano letters.

[16]  Liang Li,et al.  One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. , 2008, Journal of the American Chemical Society.

[17]  Timothy Thatt Yang Tan,et al.  Rare-Earth-Doped and Codoped Y 2O 3 Nanomaterials as Potential Bioimaging Probes , 2008 .

[18]  Jun Lin,et al.  Hydrothermal Synthesis of Lanthanide Fluorides LnF3 (Ln = La to Lu) Nano-/Microcrystals with Multiform Structures and Morphologies , 2008 .

[19]  Yong Zhang,et al.  Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. , 2008, Biomaterials.

[20]  Fuyou Li,et al.  Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. , 2008, Journal of the American Chemical Society.

[21]  R. Blyth,et al.  Performance and capabilities of the Canadian Dragon : The SGM beamline at the Canadian Light Source , 2007 .

[22]  Jun Lin,et al.  Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources , 2007 .

[23]  Jun Lin,et al.  Highly uniform and monodisperse beta-NaYF(4):Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. , 2007, Inorganic chemistry.

[24]  Louis A. Cuccia,et al.  Synthesis, Characterization, and Spectroscopy of NaGdF4: Ce3+, Tb3+/NaYF4 Core/Shell Nanoparticles , 2007 .

[25]  Yadong Li,et al.  General synthesis of colloidal rare earth orthovanadate nanocrystals , 2007 .

[26]  P. Perriat,et al.  Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. , 2007, Journal of the American Chemical Society.

[27]  V. Sudarsan,et al.  Multinuclear solid-state NMR spectroscopy of doped lanthanum fluoride nanoparticles. , 2007, Journal of the American Chemical Society.

[28]  Mati Raudsepp,et al.  Dispersible Tm3+‐Doped Nanoparticles that Exhibit Strong 1.47 μm Photoluminescence , 2007 .

[29]  Yadong Li,et al.  Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals , 2007 .

[30]  Zhengquan Li,et al.  Monodisperse silica-coated polyvinylpyrrolidone/NaYF(4) nanocrystals with multicolor upconversion fluorescence emission. , 2006, Angewandte Chemie.

[31]  F. V. van Veggel,et al.  Silica-coated Ln3+-Doped LaF3 nanoparticles as robust down- and upconverting biolabels. , 2006, Chemistry.

[32]  Louis A. Cuccia,et al.  Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. , 2006, Journal of the American Chemical Society.

[33]  Ya-Wen Zhang,et al.  High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. , 2006, Journal of the American Chemical Society.

[34]  R. Prosser,et al.  Water-Soluble GdF3 and GdF3/LaF3 NanoparticlesPhysical Characterization and NMR Relaxation Properties , 2006 .

[35]  C. O'connor,et al.  A Facile Synthesis and Photoluminescent Properties of Redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (Core/Shell) Nanoparticles , 2006 .

[36]  Feng Wang,et al.  Luminescence behavior of Eu3+ doped LaF3 nanoparticles. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[37]  F. V. van Veggel,et al.  Colloidal nanoparticles of Ln3+-doped LaVO4: energy transfer to visible- and near-infrared-emitting lanthanide ions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[38]  V. Sudarsan,et al.  Surface Eu3+ ions are different than “bulk” Eu3+ ions in crystalline doped LaF3 nanoparticles , 2005 .

[39]  T. Möller,et al.  Core-level photoemission study of the InAs/CdSe nanocrystalline system , 2004 .

[40]  T. Möller,et al.  Green-emitting CePO4:Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. , 2003, Angewandte Chemie.

[41]  Horst Weller,et al.  High resolution photoemission study of CdSe and CdSe/ZnS core-shell nanocrystals , 2003 .

[42]  T. Möller,et al.  Investigation of ZnS Passivated InP Nanocrystals by XPS , 2002 .

[43]  M. Haase,et al.  Liquid-Phase Synthesis of Colloids and Redispersible Powders of Strongly Luminescing LaPO4 :Ce,Tb Nanocrystals. , 2001, Angewandte Chemie.

[44]  B. Tissue Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts , 1998 .

[45]  Thole,et al.  Lifetime effect on the multiplet structure of 4d x-ray-photoemission spectra in heavy rare-earth elements. , 1994, Physical review. B, Condensed matter.

[46]  W. A. Dench,et al.  Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids , 1979 .