Multiphase flow models of biogels from crawling cells to bacterial biofilms

This article reviews multiphase descriptions of the fluid mechanics of cytoplasm in crawling cells and growing bacterial biofilms. These two systems involve gels, which are mixtures composed of a polymer network permeated by water. The fluid mechanics of these systems is essential to their biological function and structure. Their mathematical descriptions must account for the mechanics of the polymer, the water, and the interaction between these two phases. This review focuses on multiphase flow models because this framework is natural for including the relative motion between the phases, the exchange of material between phases, and the additional stresses within the network that arise from nonspecific chemical interactions and the action of molecular motors. These models have been successful in accounting for how different forces are generated and transmitted to achieve cell motion and biofilm growth and they have demonstrated how emergent structures develop though the interactions of the two phases. A short description of multiphase flow models of tumor growth is included to highlight the flexibility of the model in describing diverse biological applications.

[1]  J. Costerton Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. , 2001, Trends in microbiology.

[2]  Taylor,et al.  In vitro models of tail contraction and cytoplasmic streaming in amoeboid cells , 1993, The Journal of cell biology.

[3]  E. Lauga,et al.  Flapping motion and force generation in a viscoelastic fluid. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  S. Takagi,et al.  Locomotive mechanism of Physarum plasmodia based on spatiotemporal analysis of protoplasmic streaming. , 2008, Biophysical journal.

[5]  H. Eberl,et al.  Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection. , 2008, Journal of theoretical biology.

[6]  Helen M Byrne,et al.  A mechanical model of tumor encapsulation and transcapsular spread. , 2002, Mathematical biosciences.

[7]  Jacques Prost,et al.  Active gels as a description of the actin‐myosin cytoskeleton , 2009, HFSP journal.

[8]  F. MacKintosh,et al.  Nonequilibrium mechanics and dynamics of motor-activated gels. , 2007, Physical review letters.

[9]  L Mahadevan,et al.  Life and times of a cellular bleb. , 2008, Biophysical journal.

[10]  W M Lai,et al.  Fluid transport and mechanical properties of articular cartilage: a review. , 1984, Journal of biomechanics.

[11]  Joseph Teran,et al.  Peristaltic pumping and irreversibility of a Stokesian viscoelastic fluid , 2008 .

[12]  J. Costerton,et al.  Bacterial biofilms in nature and disease. , 1987, Annual review of microbiology.

[13]  N. Kamiya Protoplasmic Streaming , 1959, Protoplasmatologia Cell Biology Monographs.

[14]  Julie A. Theriot,et al.  Intracellular fluid flow in rapidly moving cells , 2009, Nature Cell Biology.

[15]  Qi Wang,et al.  PHASE-FIELD MODELS FOR BIOFILMS. I. THEORY AND 1-D SIMULATIONS ∗ , 2008 .

[16]  Marc Herant,et al.  The mechanics of neutrophils: synthetic modeling of three experiments. , 2003, Biophysical journal.

[17]  Robert L. Spilker,et al.  Formulation and evaluation of a finite element model for the biphasic model of hydrated soft tissues , 1990 .

[18]  M. Hamilton,et al.  Resilience of planktonic and biofilm cultures to supercritical CO2 , 2008 .

[19]  P. Stewart,et al.  Evidence of bacterial adaptation to monochloramine in Pseudomonas aeruginosa biofilms and evaluation of biocide action model. , 1997, Biotechnology and bioengineering.

[20]  F. Harlow,et al.  Cell motion, contractile networks, and the physics of interpenetrating reactive flow. , 1986, Biophysical journal.

[21]  M. Dembo,et al.  On the mechanics of the first cleavage division of the sea urchin egg. , 1997, Experimental cell research.

[22]  Tianyu Zhang,et al.  Phase-Field Models for Biofilms II. 2-D Numerical Simulations of Biofilm-Flow Interaction , 2008 .

[23]  Helen M. Byrne,et al.  Modelling the response of spatially structured tumours to chemotherapy: Drug kinetics , 2006, Math. Comput. Model..

[24]  Wolfgang Alt,et al.  Nonlinear Hyperbolic Systems of Generalized Navier-Stokes Type for Interactive Motion in Biology , 2003 .

[25]  N G Cogan,et al.  Two-Fluid Model of Biofilm Disinfection , 2008, Bulletin of mathematical biology.

[26]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  C. Petrie Dynamics of polymeric liquids. Volume 1. Fluid mechanics (2nd ed) : R.B. Bird, R.C. Armstrong and O. Hassager, Wiley-Interscience, New York, NY, 1987, 649 + xxi pages, ISBN 0-471-80245-X (V.1), price US$ 69.95 , 1988 .

[29]  W Gujer,et al.  A multispecies biofilm model , 1986, Biotechnology and bioengineering.

[30]  Eric Lauga,et al.  Propulsion in a viscoelastic fluid , 2007 .

[31]  K. Magnusson,et al.  Neutrophil leukocyte motility requires directed water influx , 2002, Journal of leukocyte biology.

[32]  H. C. Öttinger,et al.  Calculation of viscoelastic flow using molecular models: the connffessit approach , 1993 .

[33]  J. M. Oliver,et al.  Thin-film theories for two-phase reactive flow models of active cell motion. , 2005, Mathematical medicine and biology : a journal of the IMA.

[34]  A. Verkman,et al.  Increased migration and metastatic potential of tumor cells expressing aquaporin water channels , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[35]  Michael Sixt,et al.  Mechanical modes of 'amoeboid' cell migration. , 2009, Current opinion in cell biology.

[36]  Thomas R Powers,et al.  Theory of swimming filaments in viscoelastic media. , 2007, Physical review letters.

[37]  D. Lauffenburger,et al.  Cell Migration: A Physically Integrated Molecular Process , 1996, Cell.

[38]  I. Sutherland Biofilm exopolysaccharides: a strong and sticky framework. , 2001, Microbiology.

[39]  Isaac Klapper,et al.  Finger Formation in Biofilm Layers , 2002, SIAM J. Appl. Math..

[40]  Helen M Byrne,et al.  A multiphase model describing vascular tumour growth , 2003, Bulletin of mathematical biology.

[41]  P. Stewart,et al.  Theoretical aspects of antibiotic diffusion into microbial biofilms , 1996, Antimicrobial agents and chemotherapy.

[42]  Alex Mogilner,et al.  Multiscale Two-Dimensional Modeling of a Motile Simple-Shaped Cell , 2005, Multiscale Model. Simul..

[43]  D. Drew,et al.  Theory of Multicomponent Fluids , 1998 .

[44]  N. Allen,et al.  Cytoplasmic streaming in amoeboid movement. , 1978, Annual review of biophysics and bioengineering.

[45]  M. Dembo,et al.  Mechanics and control of the cytoskeleton in Amoeba proteus. , 1989, Biophysical journal.

[46]  Cory J. Rupp,et al.  Viscoelastic fluid description of bacterial biofilm material properties. , 2002, Biotechnology and bioengineering.

[47]  Peter Friedl,et al.  Compensation mechanism in tumor cell migration , 2003, The Journal of cell biology.

[48]  J. M. Oliver,et al.  Thin-film modelling of poroviscous free surface flows , 2005, European Journal of Applied Mathematics.

[49]  G. Fredrickson The theory of polymer dynamics , 1996 .

[50]  P. Macklem,et al.  Intracellular pressure is a motive force for cell motion in Amoeba proteus. , 1996, Cell motility and the cytoskeleton.

[51]  N G Cogan,et al.  Modeling physiological resistance in bacterial biofilms , 2005, Bulletin of mathematical biology.

[52]  N. Cogan HYBRID NUMERICAL TREATMENT OF TWO-FLUID PROBLEMS WITH PASSIVE INTERFACES , 2007 .

[53]  M. Marchetti,et al.  Bridging the microscopic and the hydrodynamic in active filament solutions , 2004, cond-mat/0406276.

[54]  O. Fackler,et al.  Cell motility through plasma membrane blebbing , 2008, The Journal of cell biology.

[55]  George Oster,et al.  The hydration dynamics of polyelectrolyte gels with applications to cell motility and drug delivery , 2004, European Biophysics Journal.

[56]  W. G. Characklis,et al.  Dynamics of biofilm processes: methods , 1982 .

[57]  T. Mitchison,et al.  Actin-Based Cell Motility and Cell Locomotion , 1996, Cell.

[58]  R T Tranquillo,et al.  An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. , 1997, Journal of biomechanical engineering.

[59]  Cory J. Rupp,et al.  Commonality of elastic relaxation times in biofilms. , 2004, Physical review letters.

[60]  Guillaume Charras,et al.  Blebs lead the way: how to migrate without lamellipodia , 2008, Nature Reviews Molecular Cell Biology.

[61]  Lee A. Segel,et al.  Averaged Equations for Two-Phase Flows , 1971 .

[62]  W Alt,et al.  Cytoplasm dynamics and cell motion: two-phase flow models. , 1999, Mathematical biosciences.

[63]  Gerard A Ateshian,et al.  A mixture theory analysis for passive transport in osmotic loading of cells. , 2006, Journal of biomechanics.

[64]  R. Sutherland Cell and environment interactions in tumor microregions: the multicell spheroid model. , 1988, Science.

[65]  M. Ishii,et al.  Thermo-Fluid Dynamics of Two-Phase Flow , 2007 .

[66]  F. MacKintosh,et al.  The mechanics and fluctuation spectrum of active gels. , 2009, The journal of physical chemistry. B.

[67]  P. Stewart,et al.  Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates , 2001, Journal of applied microbiology.

[68]  Greg Lemon,et al.  Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory , 2006, Journal of mathematical biology.

[69]  W. Mohler,et al.  Depolymerization-driven flow in nematode spermatozoa relates crawling speed to size and shape. , 2008, Biophysical journal.

[70]  I. Klapper,et al.  Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. , 2007, Water science and technology : a journal of the International Association on Water Pollution Research.

[71]  S. Molin,et al.  Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function , 2001, Journal of bacteriology.

[72]  Robert L Spilker,et al.  A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues. , 2007, Journal of biomechanical engineering.

[73]  J. Keener,et al.  The role of the biofilm matrix in structural development. , 2004, Mathematical medicine and biology : a journal of the IMA.

[74]  R. Skalak,et al.  Macro- and Microscopic Fluid Transport in Living Tissues: Application to Solid Tumors , 1997 .

[75]  James Monypenny,et al.  Rapid Actin Transport During Cell Protrusion , 2003, Science.

[76]  J J Heijnen,et al.  Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. , 1998, Biotechnology and bioengineering.

[77]  Qi Wang,et al.  Phase Field Models for Biofilms. I. Theory and One-Dimensional Simulations , 2008, SIAM J. Appl. Math..

[78]  Salman S Rogers,et al.  Intracellular microrheology of motile Amoeba proteus. , 2007, Biophysical journal.

[79]  Grady B. Wright,et al.  An Efficient and Robust Method for Simulating Two-Phase Gel Dynamics , 2008, SIAM J. Sci. Comput..

[80]  J. Kreft,et al.  Biofilms promote altruism. , 2004, Microbiology.

[81]  Kenneth M. Yamada,et al.  Cell migration in 3D matrix. , 2005, Current opinion in cell biology.

[82]  Timothy J Mitchison,et al.  Single-Molecule Speckle Analysis of Actin Filament Turnover in Lamellipodia , 2002, Science.

[83]  H. Byrne,et al.  The role of cell-cell interactions in a two-phase model for avascular tumour growth , 2002, Journal of mathematical biology.

[84]  F. Harlow,et al.  Numerical studies of unreactive contractile networks. , 1986, Biophysical journal.

[85]  Shay Gueron,et al.  Computational modeling in biological fluid dynamics , 2001 .

[86]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[87]  T D Pollard,et al.  Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. , 2000, Annual review of biophysics and biomolecular structure.

[88]  L. Mahadevan,et al.  Non-equilibration of hydrostatic pressure in blebbing cells , 2005, Nature.

[89]  T. Jackson,et al.  Multiphase mechanics of capsule formation in tumors. , 2002, Journal of biomechanical engineering.

[90]  D. Davies,et al.  Understanding biofilm resistance to antibacterial agents , 2003, Nature Reviews Drug Discovery.

[91]  Wolfgang Alt,et al.  Continuum model of cell adhesion and migration , 2009, Journal of mathematical biology.

[92]  Andrzej GręObecki,et al.  Membrane and Cytoskeleton Flow in Motile Cells with Emphasis on the Contribution of Free-Living Amoebae , 1994 .

[93]  E. Hoiczyk,et al.  How Myxobacteria Glide , 2002, Current Biology.

[94]  M. Dembo The mechanics of motility in dissociated cytoplasm. , 1986, Biophysical journal.

[95]  I. Klapper,et al.  Role of cohesion in the material description of biofilms. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  J. Joanny,et al.  Generic theory of active polar gels: a paradigm for cytoskeletal dynamics , 2004, The European physical journal. E, Soft matter.

[97]  L Mahadevan,et al.  Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. , 2008, Seminars in cell & developmental biology.

[98]  C. Wolgemuth Collective swimming and the dynamics of bacterial turbulence. , 2008, Biophysical journal.