Perceptual Techniques for Scientific Visualization

This talk describes our investigation of methods for choosing color, texture, orientation, shape, and other features to visualize certain types of large, multidimensional datasets. These datasets are becoming more and more common; examples include scientific simulation results, geographic information systems, satellite images, and biomedical scans. The overwhelming amount of information contained in these datasets makes them difficult to analyze using traditional mathematical or statistical techniques. It also makes them difficult to visualize in an efficient or useful manner.

[1]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[2]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[3]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[4]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[6]  B. Julesz,et al.  Human factors and behavioral science: Textons, the fundamental elements in preattentive vision and perception of textures , 1983, The Bell System Technical Journal.

[7]  A. Rosenfeld,et al.  A Theory of Textural Segmentation , 1983 .

[8]  Dino Schweitzer,et al.  Artificial texturing: An aid to surface visualization , 1983, SIGGRAPH.

[9]  B. Julesz A brief outline of the texton theory of human vision , 1984, Trends in Neurosciences.

[10]  T. Callaghan Dimensional interaction of hue and brightness in preattentive field segregation , 1984, Perception & psychophysics.

[11]  Anne Treisman,et al.  Preattentive processing in vision , 1985, Computer Vision Graphics and Image Processing.

[12]  A. M. Triesman,et al.  Preattentive processing in vision , 1985 .

[13]  Ken Nakayama,et al.  Serial and parallel processing of visual feature conjunctions , 1986, Nature.

[14]  A. Treisman,et al.  Illusory words: the roles of attention and of top-down constraints in conjoining letters to form words. , 1986, Journal of experimental psychology. Human perception and performance.

[15]  G W Humphreys,et al.  Visual search for targets defined by combinations of color, shape, and size: An examination of the task constraints on feature and conjunction searches , 1987, Perception & psychophysics.

[16]  Colin Ware,et al.  Color sequences for univariate maps: theory, experiments and principles , 1988, IEEE Computer Graphics and Applications.

[17]  C Ware,et al.  Using Color Dimensions to Display Data Dimensions , 1988, Human factors.

[18]  Philip K. Robertson Visualizing color gamuts: a user interface for the effective use of perceptual color spaces in data displays , 1988, IEEE Computer Graphics and Applications.

[19]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[20]  Georges G. Grinstein,et al.  Exvis: an exploratory visualization environment , 1989 .

[21]  T. Callaghan Interference and dominance in texture segregation: Hue, geometric form, and line orientation , 1989, Perception & psychophysics.

[22]  Penny Rheingans,et al.  A tool for dynamic explorations of color mappings , 1990, I3D '90.

[23]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[24]  A. Nagy,et al.  Critical color differences determined with a visual search task. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[25]  Ronald A. Rensink,et al.  Sensitivity To Three-Dimensional Orientation in Visual Search , 1990 .

[26]  M H Birnbaum,et al.  Judgments of proportions. , 1990, Journal of experimental psychology. Human perception and performance.

[27]  A L Nagy,et al.  Visual search for color differences with foveal and peripheral vision. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[28]  A. Treisman Search, similarity, and integration of features between and within dimensions. , 1991, Journal of experimental psychology. Human perception and performance.

[29]  Michael D'Zmura,et al.  Color in visual search , 1991, Vision Research.

[30]  P. McLeod,et al.  Motion coherence and conjunction search: Implications for guided search theory , 1992, Perception & psychophysics.

[31]  J. Wolfe,et al.  The role of categorization in visual search for orientation. , 1992, Journal of experimental psychology. Human perception and performance.

[32]  James T. Enns,et al.  Harnessing Preattentive Processes for Multivariate Data Visualization , 1992 .

[33]  A. Ravishankar Rao,et al.  Identifying high-level features of texture perception , 1992, Electronic Imaging.

[34]  Haim Levkowitz,et al.  Color scales for image data , 1992, IEEE Computer Graphics and Applications.

[35]  William Knight,et al.  Orderable dimensions of visual texture for data display: orientation, size and contrast , 1992, CHI.

[36]  Gerald L. Lohse,et al.  Towards a texture naming system: Identifying relevant dimensions of texture , 1993, Vision Research.

[37]  Bernice E. Rogowitz,et al.  An architecture for rule-based visualization , 1993, Proceedings Visualization '93.

[38]  A. Ravishankar Rao,et al.  Identifying High Level Features of Texture Perception , 1993, CVGIP Graph. Model. Image Process..

[39]  Fang Liu,et al.  Periodicity, directionality, and randomness: Wold features for perceptual pattern recognition , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[40]  James T. Enns,et al.  Real-Time Multivariate Data Visualization Using Preattentive Processing , 1994 .

[41]  P. Leblond,et al.  Computer Simulations of the Influence of Ocean Currents on Fraser River Sockeye Salmon (Oncorhynchus nerka) Return Times , 1994 .

[42]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[43]  Z. Pylyshyn,et al.  Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. , 1994, Psychological review.

[44]  Bernice E. Rogowitz,et al.  A rule-based tool for assisting colormap selection , 1995, Proceedings Visualization '95.

[45]  William Knight,et al.  Using visual texture for information display , 1995, TOGS.

[46]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[47]  Deborah J. Aks,et al.  Visual search for size is influenced by a background texture gradient. , 1996, Journal of experimental psychology. Human perception and performance.

[48]  James T. Enns,et al.  High-speed visual estimation using preattentive processing , 1996, TCHI.

[49]  G. Winkenbach,et al.  Rendering free-form surfaces in pen and ink , 1996 .

[50]  W. Cowan,et al.  Visual search for colour targets that are or are not linearly separable from distractors , 1996, Vision Research.

[51]  Christopher G. Healey,et al.  Choosing effective colours for data visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[52]  Victoria Interrante,et al.  Illustrating surface shape in volume data via principal direction-driven 3D line integral convolution , 1997, SIGGRAPH.

[53]  Ronald A. Rensink,et al.  TO SEE OR NOT TO SEE: The Need for Attention to Perceive Changes in Scenes , 1997 .

[54]  David Salesin,et al.  Orientable textures for image-based pen-and-ink illustration , 1997, SIGGRAPH.

[55]  S. Yantis,et al.  Visual attention: control, representation, and time course. , 1997, Annual review of psychology.

[56]  I. Rock,et al.  Inattentional blindness: Perception without attention. , 1998 .

[57]  Christopher G. Healey,et al.  On the Use of Perceptual Cues & Data Mining for Effective Visualization of Scientific Datasets , 1998, Graphics Interface.

[58]  C. Healey Building a perceptual visualisation architecture , 1998 .

[59]  James T. Enns,et al.  Building perceptual textures to visualize multidimensional datasets , 1998 .

[60]  R. Snowden,et al.  Texture segregation and visual search: a comparison of the effects of random variations along irrelevant dimensions. , 1998, Journal of experimental psychology. Human perception and performance.

[61]  James T. Enns,et al.  Large Datasets at a Glance: Combining Textures and Colors in Scientific Visualization , 1999, IEEE Trans. Vis. Comput. Graph..

[62]  P. Romano Association for Research in Vision and Ophthalmology. , 2000, Binocular vision & strabismus quarterly.