Generalized weak sharp minima of variational inequality problems with functional constraints

In this paper, the notion of generalized weak sharp minima is introduced for variational inequality problems with functional constraints in finite-dimensional spaces by virtue of a dual gap function. Some equivalent and necessary conditions for the solution set of the variational inequality problems to be a set of generalized weak sharp minima are obtained.

[1]  G. Stampacchia,et al.  On some non-linear elliptic differential-functional equations , 1966 .

[2]  J. Danskin The Theory of Max-Min, with Applications , 1966 .

[3]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[4]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[5]  M. Ferris Iterative linear programming solution of convex programs , 1990 .

[6]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[7]  Michael C. Ferris,et al.  Finite termination of the proximal point algorithm , 1991, Math. Program..

[8]  M. Ferris,et al.  Weak sharp minima in mathematical programming , 1993 .

[9]  Torbjörn Larsson,et al.  A class of gap functions for variational inequalities , 1994, Math. Program..

[10]  Michael C. Ferris,et al.  A Gauss—Newton method for convex composite optimization , 1995, Math. Program..

[11]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[12]  A. Auslender,et al.  Asymptotic Analysis for Penalty and Barrier Methods in Variational Inequalities , 1999 .

[13]  Patrice Marcotte,et al.  Erratum: Weak Sharp Solutions of Variational Inequalities , 2000, SIAM J. Optim..

[14]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[15]  R. Henrion,et al.  A Subdifferential Condition for Calmness of Multifunctions , 2001 .

[16]  Chong Li,et al.  On convergence of the Gauss-Newton method for convex composite optimization , 2002, Math. Program..

[17]  J. Burke,et al.  Weak sharp minima revisited Part I: basic theory , 2002 .

[18]  N. Xiu,et al.  The Dual Gap Function for Variational Inequalities , 2003 .

[19]  Alfred Auslender,et al.  Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone , 2003, Optim. Methods Softw..

[20]  Bingsheng He,et al.  A modified augmented Lagrangian method for a class of monotone variational inequalities , 2004, Eur. J. Oper. Res..

[21]  Soon-Yi Wu,et al.  Weak Sharp Solutions of Variational Inequalities in Hilbert Spaces , 2004, SIAM J. Optim..

[22]  Sien Deng,et al.  Weak sharp minima revisited, part II: application to linear regularity and error bounds , 2005, Math. Program..

[23]  X. Q. Yang,et al.  Weak Sharp Minima in Multicriteria Linear Programming , 2005, SIAM J. Optim..

[24]  Marcin Studniarski,et al.  Weak sharp minima in multiobjective optimization , 2007 .

[25]  Xiaoqi Yang,et al.  Weak Sharp Minima for Semi-infinite Optimization Problems with Applications , 2007, SIAM J. Optim..

[26]  Xiaoqi Yang,et al.  Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints , 2007 .

[27]  Xiaoqi Yang,et al.  Weak sharp minima for piecewise linear multiobjective optimization in normed spaces , 2008 .

[28]  Xi Yin Zheng,et al.  Global weak sharp minima for convex (semi-)infinite optimization problems , 2008 .

[29]  Soon-Yi Wu,et al.  Gâteaux differentiability of the dual gap function of a variational inequality , 2008, Eur. J. Oper. Res..

[30]  Sien Deng,et al.  Weak sharp minima revisited, Part III: error bounds for differentiable convex inclusions , 2008, Math. Program..

[31]  Laura J. Kettner,et al.  On Well-Posedness and Hausdorff Convergence of Solution Sets of Vector Optimization Problems , 2012, J. Optim. Theory Appl..