Deciphering cell–cell interactions and communication from gene expression

[1]  Lihua Zhang,et al.  Inference and analysis of cell-cell communication using CellChat , 2020, Nature Communications.

[2]  Guocheng Yuan,et al.  Giotto, a toolbox for integrative analysis and visualization of spatial expression data , 2020 .

[3]  J. Holst,et al.  An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles , 2020, Nature Communications.

[4]  I. Amit,et al.  Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer , 2020, Cell.

[5]  Ziv Bar-Joseph,et al.  Identifying signaling genes in spatial single cell expression data , 2020, bioRxiv.

[6]  M. Selbach,et al.  mRNAs, proteins and the emerging principles of gene expression control , 2020, Nature Reviews Genetics.

[7]  Christoph Bock,et al.  Structural cells are key regulators of organ-specific immune response , 2020, Nature.

[8]  Roland Eils,et al.  COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis , 2020, Nature Biotechnology.

[9]  Zemin Zhang,et al.  Reconstruction of cell spatial organization from single-cell RNA sequencing data based on ligand-receptor mediated self-assembly , 2020, Cell Research.

[10]  Yuan Zhang,et al.  Single cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. , 2020, Journal of hepatology.

[11]  Huajun Chen,et al.  New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data , 2020, Protein & Cell.

[12]  Denis Shutin,et al.  Combining native and ‘omics’ mass spectrometry to identify endogenous ligands bound to membrane proteins , 2020, Nature Methods.

[13]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[14]  Q. Nie,et al.  Inferring spatial and signaling relationships between cells from single cell transcriptomic data , 2020, Nature Communications.

[15]  Ricardo Bessa de Castro,et al.  Evaluation of Single-Cell Cytokine Secretion and Cell-Cell Interactions with a Hierarchical Loading Microwell Chip , 2020, Cell reports.

[16]  Jill P. Mesirov,et al.  What does your cell really do? Model-based assessment of mammalian cells metabolic functionalities using omics data , 2020, bioRxiv.

[17]  J. Mallm,et al.  Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming , 2020, Communications Biology.

[18]  Allon M. Klein,et al.  Lineage tracing meets single-cell omics: opportunities and challenges , 2020, Nature Reviews Genetics.

[19]  N. Callewaert,et al.  Human T cell glycosylation and implications on immune therapy for cancer , 2020, Human vaccines & immunotherapeutics.

[20]  Amos Tanay,et al.  Dissecting cellular crosstalk by sequencing physically interacting cells , 2020, Nature Biotechnology.

[21]  Maximilien Grandclaudon,et al.  ICELLNET: a transcriptome-based framework to dissect intercellular communication , 2020, bioRxiv.

[22]  Mirjana Efremova,et al.  CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes , 2020, Nature Protocols.

[23]  E. Morrisey,et al.  Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury , 2020, eLife.

[24]  Shuye Zhang,et al.  Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses , 2020, bioRxiv.

[25]  Alexey M. Kozlov,et al.  Eleven grand challenges in single-cell data science , 2020, Genome Biology.

[26]  M. Atkins,et al.  Checkpoint inhibitor immunotherapy in kidney cancer , 2020, Nature Reviews Urology.

[27]  F. Jamali,et al.  Single dose pharmacokinetics and bioavailability of glucosamine in the rat. , 2002, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[28]  Ying Lin,et al.  Cell-cell contact-induced gene editing/activation in mammalian cells using a synNotch-CRISPR/Cas9 system , 2020, Protein & Cell.

[29]  S. Teichmann,et al.  A cell atlas of human thymic development defines T cell repertoire formation , 2020, Science.

[30]  Itai Yanai,et al.  Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas , 2020, Nature Biotechnology.

[31]  Jichao Chen,et al.  Quantitative single-cell interactomes in normal and virus-infected mouse lungs , 2020, bioRxiv.

[32]  Shengshou Hu,et al.  Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function , 2020, Nature Cell Biology.

[33]  J. Wiśniewski,et al.  Global variability analysis of mRNA and protein concentrations across and within human tissues , 2019, NAR genomics and bioinformatics.

[34]  Steffi Oesterreich,et al.  Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. , 2019, Immunity.

[35]  Patrick M. Helbling,et al.  Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization , 2019, Nature Cell Biology.

[36]  Q. Nie,et al.  Revealing Dynamic Mechanisms of Cell Fate Decisions From Single-Cell Transcriptomic Data , 2019, Frontiers in Genetics.

[37]  Jacques Colinge,et al.  SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics , 2019, bioRxiv.

[38]  Y. Saeys,et al.  NicheNet: modeling intercellular communication by linking ligands to target genes , 2019, Nature Methods.

[39]  Y. Kluger,et al.  Single-cell connectomic analysis of adult mammalian lungs , 2019, Science Advances.

[40]  Sagar,et al.  Systematic Identification of Cell-Cell Communication Networks in the Developing Brain , 2019, iScience.

[41]  Y. Saeys,et al.  Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche , 2019, Immunity.

[42]  Xianwen Ren,et al.  Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma , 2019, Cell.

[43]  Nicolas F. Fernandez,et al.  Single-cell immune landscape of human atherosclerotic plaques , 2019, Nature Medicine.

[44]  C. Lévy-Leduc,et al.  A Quantitative Multivariate Model of Human Dendritic Cell-T Helper Cell Communication , 2019, Cell.

[45]  Adam L. Maclean,et al.  Single cell transcriptomics of human epidermis reveals basal stem cell transition states , 2019, bioRxiv.

[46]  Sarah A. Teichmann,et al.  Spatiotemporal immune zonation of the human kidney , 2019, Science.

[47]  Gary D. Bader,et al.  Single-cell transcriptomic profiling of the aging mouse brain , 2019, Nature Neuroscience.

[48]  Leonardo Bich,et al.  Understanding Multicellularity: The Functional Organization of the Intercellular Space , 2019, Front. Physiol..

[49]  David McDonald,et al.  Decoding human fetal liver haematopoiesis , 2019, Nature.

[50]  Richard Bonneau,et al.  High-definition spatial transcriptomics for in situ tissue profiling , 2019, Nature Methods.

[51]  T. K. Nguyen,et al.  CRISPR technologies for stem cell engineering and regenerative medicine. , 2019, Biotechnology advances.

[52]  Vivien Marx,et al.  A dream of single-cell proteomics , 2019, Nature Methods.

[53]  M. Betenbaugh,et al.  Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities , 2019, Nature Microbiology.

[54]  Brian Kuhlman,et al.  Advances in protein structure prediction and design , 2019, Nature Reviews Molecular Cell Biology.

[55]  Jiandie D. Lin,et al.  Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis. , 2019, Molecular cell.

[56]  Patrick M. Helbling,et al.  Combined single-cell and spatial transcriptomics reveals the molecular, cellular and spatial bone marrow niche organization , 2019, Nature Cell Biology.

[57]  Z. Trajanoski,et al.  Next-generation computational tools for interrogating cancer immunity , 2019, Nature Reviews Genetics.

[58]  Long Cai,et al.  Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data , 2019, bioRxiv.

[59]  F. Tang,et al.  Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis , 2019, PLoS biology.

[60]  Fabian J Theis,et al.  A cellular census of human lungs identifies novel cell states in health and in asthma , 2019, Nature Medicine.

[61]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[62]  Tieliu Shi,et al.  Systematic expression analysis of ligand-receptor pairs reveals important cell-to-cell interactions inside glioma , 2019, Cell communication and signaling : CCS.

[63]  J. Han,et al.  A 3D Atlas of Hematopoietic Stem and Progenitor Cell Expansion by Multi-dimensional RNA-Seq Analysis. , 2019, Cell reports.

[64]  Wei Zhang,et al.  Dissecting intratumoral myeloid cell plasticity by single cell RNA‐seq , 2019, Cancer medicine.

[65]  Qing Nie,et al.  Cell lineage and communication network inference via optimization for single-cell transcriptomics , 2019, Nucleic acids research.

[66]  Koki Tsuyuzaki,et al.  Uncovering hypergraphs of cell-cell interaction from single cell RNA-sequencing data , 2019, bioRxiv.

[67]  P. Rigollet,et al.  Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming , 2019, Cell.

[68]  C. Mason,et al.  The Impact of Heterogeneity on Single-Cell Sequencing , 2019, Front. Genet..

[69]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[70]  B. Tucker,et al.  PyMINEr Finds Gene and Autocrine-Paracrine Networks from Human Islet scRNA-Seq , 2019, Cell reports.

[71]  N. Beerenwinkel,et al.  Neutrophils escort circulating tumour cells to enable cell cycle progression , 2019, Nature.

[72]  P. Rigollet,et al.  Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming , 2019, Cell.

[73]  D. Hung,et al.  Single-Cell RNA Sequencing to Understand Host-Pathogen Interactions. , 2019, ACS infectious diseases.

[74]  E. Lundberg,et al.  Spatial proteomics: a powerful discovery tool for cell biology , 2019, Nature Reviews Molecular Cell Biology.

[75]  C. Nelson,et al.  Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data , 2019, BMC Bioinformatics.

[76]  J. Ajani,et al.  iTALK: an R Package to Characterize and Illustrate Intercellular Communication , 2019, bioRxiv.

[77]  Guang Li,et al.  Single cell expression analysis reveals anatomical and cell cycle-dependent transcriptional shifts during heart development , 2019, Development.

[78]  Judy H. Cho,et al.  Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy , 2019, Cell.

[79]  Haojia Wu,et al.  Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis. , 2018, Journal of the American Society of Nephrology : JASN.

[80]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[81]  Giulia Antonazzo,et al.  FlyBase 2.0: the next generation , 2018, Nucleic Acids Res..

[82]  Morten Nielsen,et al.  A generic deep convolutional neural network framework for prediction of receptor–ligand interactions—NetPhosPan: application to kinase phosphorylation prediction , 2018, Bioinform..

[83]  Stephen T. C. Wong,et al.  Systematic Identification of Druggable Epithelial–Stromal Crosstalk Signaling Networks in Ovarian Cancer , 2018, Journal of the National Cancer Institute.

[84]  Priya S. Shah,et al.  Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis , 2018, Cell.

[85]  Robyn M. Kaake,et al.  Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication , 2018, Cell.

[86]  Kerstin B. Meyer,et al.  Single-cell reconstruction of the early maternal–fetal interface in humans , 2018, Nature.

[87]  Douglas A. Lauffenburger,et al.  Analysis of Single-Cell RNA-Seq Identifies Cell-Cell Communication Associated with Tumor Characteristics , 2018, Cell reports.

[88]  I. Amit,et al.  Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in Macrophage Imprinting , 2018, Cell.

[89]  Mingxun Wang,et al.  Qiita: rapid, web-enabled microbiome meta-analysis , 2018, Nature Methods.

[90]  T. Tuschl,et al.  A single-cell survey of the human first-trimester placenta and decidua , 2018, Science Advances.

[91]  Maria Kasper,et al.  Single-Cell Transcriptomics of Traced Epidermal and Hair Follicle Stem Cells Reveals Rapid Adaptations during Wound Healing. , 2018, Cell reports.

[92]  Xia Yang,et al.  Single cell molecular alterations reveal target cells and pathways of concussive brain injury , 2018, Nature Communications.

[93]  I. Amit,et al.  Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells , 2018, Nature Biotechnology.

[94]  A. Kudlicki,et al.  Predicting proteome dynamics using gene expression data , 2018, Scientific Reports.

[95]  K. Red-Horse,et al.  Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells , 2018, Circulation research.

[96]  Mark Danielsen,et al.  An Introduction to the Analysis of Single-Cell RNA-Sequencing Data , 2018, Molecular therapy. Methods & clinical development.

[97]  Haojia Wu,et al.  Single-Cell Transcriptomics of a Human Kidney Allograft Biopsy Specimen Defines a Diverse Inflammatory Response. , 2018, Journal of the American Society of Nephrology : JASN.

[98]  Alexander van Oudenaarden,et al.  Mapping the physical network of cellular interactions , 2018, Nature Methods.

[99]  Ronnie H. Fang,et al.  Defining Host Responses during Systemic Bacterial Infection through Construction of a Murine Organ Proteome Atlas. , 2018, Cell systems.

[100]  Mazhar Adli,et al.  The CRISPR tool kit for genome editing and beyond , 2018, Nature Communications.

[101]  Jeffrey A. Wiser,et al.  Immune-centric network of cytokines and cells in disease context identified by computational mining of PubMed , 2018, Nature Biotechnology.

[102]  Anne Richelle,et al.  Assessing key decisions for transcriptomic data integration in biochemical networks , 2018, bioRxiv.

[103]  O. Stegle,et al.  Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis , 2018, bioRxiv.

[104]  Rob Knight,et al.  American Gut: an Open Platform for Citizen Science Microbiome Research , 2018, mSystems.

[105]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[106]  Uri Alon,et al.  Circuit Design Features of a Stable Two-Cell System , 2018, Cell.

[107]  Daniel A. Skelly,et al.  Single-Cell Transcriptional Profiling Reveals Cellular Diversity and Intercommunication in the Mouse Heart. , 2018, Cell reports.

[108]  Jeffrey A. Wiser,et al.  Immune-centric network of cytokines and cells in disease context identified by computational mining of PubMed , 2018, Nature Biotechnology.

[109]  Juliana Costa-Silva,et al.  RNA-Seq differential expression analysis: An extended review and a software tool , 2017, PloS one.

[110]  Allon M. Klein,et al.  Single-Cell Analysis of Experience-Dependent Transcriptomic States in Mouse Visual Cortex , 2017, Nature Neuroscience.

[111]  Rick L. Stevens,et al.  A communal catalogue reveals Earth’s multiscale microbial diversity , 2017, Nature.

[112]  Shawn M. Gillespie,et al.  Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer , 2017, Cell.

[113]  Aris Gioutlakis,et al.  PICKLE 2.0: A human protein-protein interaction meta-database employing data integration via genetic information ontology , 2017, PloS one.

[114]  E. Morrisey,et al.  Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung , 2017, Cell.

[115]  Sarah A. Teichmann,et al.  Faculty Opinions recommendation of histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. , 2017 .

[116]  Sui Huang,et al.  Extracting Intercellular Signaling Network of Cancer Tissues using Ligand-Receptor Expression Patterns from Whole-tumor and Single-cell Transcriptomes , 2017, Scientific Reports.

[117]  Joel Sjöstrand,et al.  ST Pipeline: an automated pipeline for spatial mapping of unique transcripts , 2017, Bioinform..

[118]  Bernd Bodenmiller,et al.  miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data , 2017, Nature Methods.

[119]  H. Binder,et al.  Multilineage communication regulates human liver bud development from pluripotency , 2017, Nature.

[120]  Sui Huang,et al.  Extracting Intercellular Signaling Network of Cancer Tissues using Ligand-Receptor Expression Patterns from Whole-tumor and Single-cell Transcriptomes , 2017, Scientific Reports.

[121]  S. Shen-Orr,et al.  Social network architecture of human immune cells unveiled by quantitative proteomics , 2017, Nature Immunology.

[122]  G. Wagner,et al.  Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface , 2017, Genome research.

[123]  Thomas R. Middendorf,et al.  The structure of binding curves and practical identifiability of equilibrium ligand-binding parameters , 2017, The Journal of general physiology.

[124]  W. D. de Vos,et al.  Sugar Coating the Envelope: Glycoconjugates for Microbe-Host Crosstalk. , 2016, Trends in microbiology.

[125]  Priya Ranganathan,et al.  Common pitfalls in statistical analysis: The use of correlation techniques , 2016, Perspectives in clinical research.

[126]  Maria Kasper,et al.  Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity , 2016, Cell systems.

[127]  P. Zandstra,et al.  Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks , 2016, Neuron.

[128]  Ying Jiang,et al.  A Cell-type-resolved Liver Proteome* , 2016, Molecular & Cellular Proteomics.

[129]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[130]  Natalia N. Ivanova,et al.  Microbiome Data Science: Understanding Our Microbial Planet. , 2016, Trends in microbiology.

[131]  R. Aebersold,et al.  On the Dependency of Cellular Protein Levels on mRNA Abundance , 2016, Cell.

[132]  B. Aggarwal,et al.  Understanding perception of chronic obstructive pulmonary disease among general practitioners, physicians, and pulmonologists in India: Results from a face-to-face survey , 2016, Perspectives in clinical research.

[133]  Daniel J. Gaffney,et al.  A survey of best practices for RNA-seq data analysis , 2016, Genome Biology.

[134]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[135]  Piero Carninci,et al.  A draft network of ligand–receptor-mediated multicellular signalling in human , 2015, Nature Communications.

[136]  Gwendolyn M. Jang,et al.  Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. , 2015, Cell host & microbe.

[137]  Benjamin Haibe-Kains,et al.  Extensive rewiring of epithelial-stromal co-expression networks in breast cancer , 2015, Genome Biology.

[138]  Reinhard Guthke,et al.  A review on computational systems biology of pathogen–host interactions , 2015, Front. Microbiol..

[139]  Stephen T. C. Wong,et al.  Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model. , 2015, Cell reports.

[140]  Farshad Khunjush,et al.  Computational approaches for prediction of pathogen-host protein-protein interactions , 2015, Front. Microbiol..

[141]  Reinhard Guthke,et al.  Computational prediction of molecular pathogen-host interactions based on dual transcriptome data , 2015, Front. Microbiol..

[142]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[143]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[144]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[145]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[146]  Z. Werb,et al.  Remodelling the extracellular matrix in development and disease , 2014, Nature Reviews Molecular Cell Biology.

[147]  Andrei L. Turinsky,et al.  Intercellular network structure and regulatory motifs in the human hematopoietic system , 2014, Molecular systems biology.

[148]  Baris Atakan,et al.  Molecular Communications and Nanonetworks: From Nature To Practical Systems , 2014 .

[149]  V. S. Rao,et al.  Protein-Protein Interaction Detection: Methods and Analysis , 2014, International journal of proteomics.

[150]  Andreas Krämer,et al.  Causal analysis approaches in Ingenuity Pathway Analysis , 2013, Bioinform..

[151]  Joanna L. Sharman,et al.  The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands , 2013, Nucleic Acids Res..

[152]  Baris Atakan,et al.  Passive Molecular Communication Through Ligand–Receptor Binding , 2014 .

[153]  P. Bork,et al.  Evolution and functional cross‐talk of protein post‐translational modifications , 2013, Molecular systems biology.

[154]  Peter Willett,et al.  What is a tutorial , 2013 .

[155]  Igor I. Baskin,et al.  Predicting Ligand Binding Modes from Neural Networks Trained on Protein-Ligand Interaction Fingerprints , 2013, J. Chem. Inf. Model..

[156]  A. Valencia,et al.  Emerging methods in protein co-evolution , 2013, Nature Reviews Genetics.

[157]  Evgeny M. Zdobnov,et al.  OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs , 2012, Nucleic Acids Res..

[158]  L. Zitvogel,et al.  Targeting PD-1/PD-L1 interactions for cancer immunotherapy , 2012, Oncoimmunology.

[159]  B. Mendonca Methods and Analysis , 2012 .

[160]  M. Basson,et al.  Signaling in cell differentiation and morphogenesis. , 2012, Cold Spring Harbor perspectives in biology.

[161]  Kakajan Komurov,et al.  Modeling community-wide molecular networks of multicellular systems , 2012, Bioinform..

[162]  V. Hakim,et al.  Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks. , 2012, Biophysical journal.

[163]  John H. Morris,et al.  Global landscape of HIV–human protein complexes , 2011, Nature.

[164]  Cécile Boscher,et al.  Glycosylation, galectins and cellular signaling. , 2011, Current opinion in cell biology.

[165]  Gary D. Bader,et al.  Pathway Commons, a web resource for biological pathway data , 2010, Nucleic Acids Res..

[166]  Stephen Guest,et al.  DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila , 2010, Nucleic Acids Res..

[167]  A. Lux,et al.  Impact of differential glycosylation on IgG activity. , 2011, Advances in experimental medicine and biology.

[168]  Gary D Bader,et al.  Dynamic interaction networks in a hierarchically organized tissue , 2010, Molecular systems biology.

[169]  Kimberly Van Auken,et al.  WormBase: a comprehensive resource for nematode research , 2009, Nucleic Acids Res..

[170]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[171]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[172]  Hedi Peterson,et al.  g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments , 2007, Nucleic Acids Res..

[173]  Paul W. Sternberg,et al.  WormBook: the online review of Caenorhabditis elegans biology , 2006, Nucleic Acids Res..

[174]  John D Lambris,et al.  Crossroads Between Innate and Adaptive Immunity IV , 2013, Advances in Experimental Medicine and Biology.

[175]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[176]  H. Ellingsgaard,et al.  Low Concentration of Interleukin-1β Induces FLICE-Inhibitory Protein–Mediated β-Cell Proliferation in Human Pancreatic Islets , 2006, Diabetes.

[177]  Carlos Prieto,et al.  APID: Agile Protein Interaction DataAnalyzer , 2006, Nucleic Acids Res..

[178]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[179]  G. Collins The next generation. , 2006, Scientific American.

[180]  Martin Vingron,et al.  IntAct: an open source molecular interaction database , 2004, Nucleic Acids Res..

[181]  David Eisenberg,et al.  Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles , 2001, Nature Genetics.

[182]  D. Granger,et al.  Adhesion molecules and their role in vascular disease. , 2001, American journal of hypertension.

[183]  A Sasaki,et al.  Negative regulation of cytokine signaling pathways. , 2000, Annual review of immunology.

[184]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[185]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[186]  L. Liotta,et al.  Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. , 1999, The American journal of pathology.

[187]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[188]  B O Palsson,et al.  Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[189]  B. Foster,et al.  Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[190]  N. Sato,et al.  Multimeric cytokine receptors: common versus specific functions. , 1994, Current opinion in cell biology.

[191]  Jeffrey L. Wrana,et al.  TGFβ signals through a heteromeric protein kinase receptor complex , 1992, Cell.

[192]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .