Growing multiconfigurational potential energy surfaces with applications to X + H2 (X = C,N,O) reactions.

A previously developed method, based on a Shepard interpolation procedure to automatically construct a quantum mechanical potential energy surface (PES), is extended to the construction of multiple potential energy surfaces using multiconfigurational wave functions. These calculations are accomplished with the interface of the PES-building program, GROW, and the GAMESS suite of electronic structure programs. The efficient computation of multiconfigurational self-consistent field surfaces is illustrated with the C + H2, N + H2, and O + H2 reactions.

[1]  Lawrence B. Harding,et al.  Theoretical studies of the reactions hydrogen atom + methylidyne .fwdarw. carbon + hydrogen and carbon + hydrogen .fwdarw. methylene using an ab initio global ground-state potential surface for methylene , 1993 .

[2]  H. W. Schranz,et al.  An efficient microcanonical sampling procedure for molecular systems , 1991 .

[3]  George C. Schatz,et al.  Theoretical studies of the O+H2 reaction , 1980 .

[4]  Michael A. Collins,et al.  POLYATOMIC MOLECULAR POTENTIAL ENERGY SURFACES BY INTERPOLATION IN LOCAL INTERNAL COORDINATES , 1998 .

[5]  D. Bonchev,et al.  Chemical group theory : techniques and applications , 1995 .

[6]  Michael A. Collins,et al.  The Interface Between Electronic Structure Theory and Reaction Dynamics by Reaction Path Methods , 2007 .

[7]  Richard A. Yetter,et al.  An Eigenvalue Method for Computing the Burning Rates of RDX Propellants , 1997 .

[8]  Hiroyuki Matsui,et al.  Reactions of N(4S) atoms with NO and H2 , 1990 .

[9]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[10]  H. Rabitz,et al.  POTENTIAL ENERGY SURFACE AND QUASICLASSICAL TRAJECTORY STUDIES OF THE N(2D)+H2 REACTION , 1996 .

[11]  George C. Schatz,et al.  Quasiclassical Trajectory and Transition State Theory Studies of the N(4S) + H2 ↔ NH(X3Σ-) + H Reaction , 2002 .

[12]  Peter J. Knowles,et al.  A potential energy surface for the ground state of CH2 , 1983 .

[13]  Henry F. Schaefer,et al.  The X̃ 3B1, ã 1A1, b̃ 1B1, and c̃ 1A1 Electronic States of CH2 , 1996 .

[14]  De-Cai Fang,et al.  Ab Initio Studies on the Dynamical Properties of the Reaction NH(X3Σ-) + H → N(4S) + H2 , 1997 .

[15]  Michael A. Collins,et al.  Molecular potential-energy surfaces by interpolation: Furtherrefinements , 1997 .

[16]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[17]  J. Mason,et al.  Algorithms for approximation , 1987 .

[18]  J. Murrell,et al.  Molecular Potential Energy Functions , 1985 .

[19]  George C. Schatz,et al.  The evaluation of fitting functions for the representation of an O( 3P)+H2 potential energy surface. I , 1981 .

[20]  M. A. Collins,et al.  Molecular potential energy surfaces by interpolation , 1994 .

[21]  B. Bussery-Honvault,et al.  A study of the C(1D)+H2→CH+H reaction: Global potential energy surface and quantum dynamics , 2001 .

[22]  Mark S. Gordon,et al.  Algorithms and accuracy requirements for computing reaction paths by the method of steepest descent , 1988 .

[23]  Henry F. Schaefer,et al.  X- {sup 3}B{sub 1}, a- {sup 1}A{sub 1}, b- {sup 1}B{sub 1}, and c- {sup 1}A{sub 1} electronic states of CH{sub 2} , 1996 .

[24]  Michael A. Collins,et al.  Learning to interpolate molecular potential energy surfaces with confidence: A Bayesian approach , 1999 .

[25]  Donald J. Kouri,et al.  Distributed approximating functional fit of the H3 ab initio potential-energy data of Liu and Siegbahn , 1997 .

[26]  William A. Lester,et al.  Trajectory studies of O+H2 reactions on fitted abinitio surfaces. II. Singlet case , 1979 .

[27]  Àngels González-Lafont,et al.  MORATE: a program for direct dynamics calculations of chemical reaction rates by semiempirical molecular orbital theory , 1993 .

[28]  Ronald K. Hanson,et al.  A pyrolysis mechanism for ammonia , 1990 .

[29]  J. Stewart,et al.  Semi‐empirical calculations of molecular trajectories: Method and applications to some simple molecular systems , 1987 .

[30]  M. A. Collins,et al.  Convergence of molecular potential energy surfaces by interpolation: Application to the OH+H2→H2O+H reaction , 1995 .

[31]  Michael A. Collins,et al.  Potential energy surfaces and dynamics for the reactions between C(3P) and H3+(1A1′) , 1998 .

[32]  M. A. Collins,et al.  The utility of higher order derivatives in constructing molecular potential energy surfaces by interpolation , 1995 .

[33]  George C. Schatz,et al.  Automatic potential energy surface generation directly from ab initio calculations using Shepard interpolation: A test calculation for the H2+H system , 1997 .