Global analysis of transcriptional regulators in Staphylococcus aureus

[1]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[2]  E. Pérez-Rueda,et al.  Global analysis of transcriptional regulators in Staphylococcus aureus , 2013, BMC Genomics.

[3]  L. Thurlow,et al.  Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). , 2012, FEMS immunology and medical microbiology.

[4]  A. Richardson,et al.  Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines , 2011, Molecular microbiology.

[5]  T. Mascher,et al.  The Bacillus subtilis GntR Family Repressor YtrA Responds to Cell Wall Antibiotics , 2011, Journal of bacteriology.

[6]  J. Cavin,et al.  Genetic and Biochemical Analysis of PadR-padC Promoter Interactions during the Phenolic Acid Stress Response in Bacillus subtilis 168 , 2011, Journal of bacteriology.

[7]  Xudong Liang,et al.  Identification of Single Nucleotide Polymorphisms Associated with Hyperproduction of Alpha-Toxin in Staphylococcus aureus , 2011, PloS one.

[8]  S. Arold,et al.  Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check , 2010, The EMBO journal.

[9]  D. Giedroc,et al.  The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor. , 2010, Journal of molecular biology.

[10]  Adeline R. Whitney,et al.  Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. , 2010, The Journal of infectious diseases.

[11]  J. Penadés,et al.  The phage-related chromosomal islands of Gram-positive bacteria , 2010, Nature Reviews Microbiology.

[12]  J. Hinds,et al.  Transcriptional Profiling of XdrA, a New Regulator of spa Transcription in Staphylococcus aureus , 2010, Journal of bacteriology.

[13]  R. Daum,et al.  Community-Associated Methicillin-Resistant Staphylococcus aureus: Epidemiology and Clinical Consequences of an Emerging Epidemic , 2010, Clinical Microbiology Reviews.

[14]  J. Altenbuchner,et al.  Characterization of a Mannose Utilization System in Bacillus subtilis , 2010, Journal of bacteriology.

[15]  W. Witte,et al.  Community-acquired methicillin-resistant Staphylococcus aureus: what do we need to know? , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[16]  F. DeLeo,et al.  An update on community-associated MRSA virulence. , 2009, Current opinion in pharmacology.

[17]  M. Lei,et al.  Rbf Promotes Biofilm Formation by Staphylococcus aureus via Repression of icaR, a Negative Regulator of icaADBC , 2009, Journal of bacteriology.

[18]  A. Manna,et al.  Expression of the sarA family of genes in different strains of Staphylococcus aureus. , 2009, Microbiology.

[19]  F. DeLeo,et al.  Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus , 2009, Proceedings of the National Academy of Sciences.

[20]  L. Van Melderen,et al.  Bacterial Toxin–Antitoxin Systems: More Than Selfish Entities? , 2009, PLoS genetics.

[21]  Roberto Kolter,et al.  A Widely Conserved Gene Cluster Required for Lactate Utilization in Bacillus subtilis and Its Involvement in Biofilm Formation , 2009, Journal of bacteriology.

[22]  Manuel Liebeke,et al.  Genome‐wide responses to carbonyl electrophiles in Bacillus subtilis: control of the thiol‐dependent formaldehyde dehydrogenase AdhA and cysteine proteinase YraA by the MerR‐family regulator YraB (AdhR) , 2009, Molecular microbiology.

[23]  J. Sarles,et al.  Genomic analysis of an emerging multiresistant Staphylococcus aureus strain rapidly spreading in cystic fibrosis patients revealed the presence of an antibiotic inducible bacteriophage , 2009, Biology Direct.

[24]  A. Grossman,et al.  A conserved anti‐repressor controls horizontal gene transfer by proteolysis , 2008, Molecular microbiology.

[25]  Li Basuino,et al.  The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. , 2008, The Journal of infectious diseases.

[26]  E. Pérez-Rueda,et al.  The DNA-binding domain as a functional indicator: the case of the AraC/XylS family of transcription factors , 2008, Genetica.

[27]  M. Hecker,et al.  Regulation of quinone detoxification by the thiol stress sensing DUF24/MarR‐like repressor, YodB in Bacillus subtilis , 2008, Molecular microbiology.

[28]  M. Hecker,et al.  The MarR‐type repressor MhqR (YkvE) regulates multiple dioxygenases/glyoxalases and an azoreductase which confer resistance to 2‐methylhydroquinone and catechol in Bacillus subtilis , 2007, Molecular microbiology.

[29]  J. Helmann,et al.  Substrate induction of siderophore transport in Bacillus subtilis mediated by a novel one‐component regulator , 2007, Molecular microbiology.

[30]  A. Grossman,et al.  Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis , 2007, Molecular microbiology.

[31]  B. Sjöberg,et al.  NrdR Controls Differential Expression of the Escherichia coli Ribonucleotide Reductase Genes , 2007, Journal of bacteriology.

[32]  F. Tenover,et al.  Epidemiologic Distribution of the Arginine Catabolic Mobile Element among Selected Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Isolates , 2007, Journal of Clinical Microbiology.

[33]  S. Fuchs,et al.  Anaerobic Gene Expression in Staphylococcus aureus , 2007, Journal of bacteriology.

[34]  J. Colmer-Hamood,et al.  PtxR modulates the expression of QS‐controlled virulence factors in the Pseudomonas aeruginosa strain PAO1 , 2006, Molecular microbiology.

[35]  E. Pérez-Rueda,et al.  Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes- a genomic approach , 2006, BMC Genomics.

[36]  H. Aramaki,et al.  Transcriptional analysis of the Pseudomonas aeruginosa toxA regulatory gene ptxR. , 2006, Canadian journal of microbiology.

[37]  V. L. Miller,et al.  Regulation of virulence by members of the MarR/SlyA family. , 2006, Current opinion in microbiology.

[38]  J. Patel,et al.  Characterization of a Strain of Community-AssociatedMethicillin-Resistant Staphylococcus aureus WidelyDisseminated in the UnitedStates , 2006, Journal of Clinical Microbiology.

[39]  Sarah A. Teichmann,et al.  DBD: a transcription factor prediction database , 2005, Nucleic Acids Res..

[40]  Kenneth W. Bayles,et al.  A LysR-Type Regulator, CidR, Is Required for Induction of the Staphylococcus aureus cidABC Operon , 2005, Journal of bacteriology.

[41]  Xudong Liang,et al.  Global Regulation of Gene Expression by ArlRS, a Two-Component Signal Transduction Regulatory System of Staphylococcus aureus , 2005, Journal of bacteriology.

[42]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[43]  J. García,et al.  BzdR, a Repressor That Controls the Anaerobic Catabolism of Benzoate in Azoarcus sp. CIB, Is the First Member of a New Subfamily of Transcriptional Regulators* , 2005, Journal of Biological Chemistry.

[44]  Julio Collado-Vides,et al.  Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea , 2004, Comput. Biol. Chem..

[45]  B. Barrell,et al.  Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Beckett,et al.  The biotin repressor: modulation of allostery by corepressor analogs. , 2004, Journal of molecular biology.

[47]  J. Helmann,et al.  Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. , 2003, Microbiology.

[48]  K. Schmidt,et al.  SarT Influences sarS Expression in Staphylococcus aureus , 2003, Infection and Immunity.

[49]  M. Hecker,et al.  Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics , 2002, Molecular Genetics and Genomics.

[50]  J. Musser,et al.  Genome Sequence Survey Identifies Unique Sequences and Key Virulence Genes with Unusual Rates of Amino Acid Substitution in Bovine Staphylococcus aureus , 2002, Infection and Immunity.

[51]  A. Sonenshein,et al.  GabR, a member of a novel protein family, regulates the utilization of γ‐aminobutyrate in Bacillus subtilis , 2002, Molecular microbiology.

[52]  S. Gill,et al.  SarT, a Repressor of α-Hemolysin inStaphylococcus aureus , 2001, Infection and Immunity.

[53]  Teruyo Ito,et al.  Structural Comparison of Three Types of Staphylococcal Cassette Chromosome mec Integrated in the Chromosome in Methicillin-Resistant Staphylococcus aureus , 2001, Antimicrobial Agents and Chemotherapy.

[54]  L. Cybulski,et al.  Molecular basis of thermosensing: a two‐component signal transduction thermometer in Bacillus subtilis , 2001, The EMBO journal.

[55]  Timothy J. Foster,et al.  Characterization of a Putative Pathogenicity Island from Bovine Staphylococcus aureus Encoding Multiple Superantigens , 2001, Journal of bacteriology.

[56]  S. Ehrlich,et al.  An Operon for a Putative ATP-Binding Cassette Transport System Involved in Acetoin Utilization ofBacillus subtilis , 2000, Journal of bacteriology.

[57]  M. Hecker,et al.  Regulation of the lic Operon ofBacillus subtilis and Characterization of Potential Phosphorylation Sites of the LicR Regulator Protein by Site-Directed Mutagenesis , 1999, Journal of bacteriology.

[58]  Y. Fujita,et al.  Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis , 1997, Journal of Bacteriology.

[59]  A. Sonenshein,et al.  Altered transcription activation specificity of a mutant form of Bacillus subtilis GltR, a LysR family member , 1997, Journal of bacteriology.

[60]  M. Dahl,et al.  Expression of the tre operon of Bacillus subtilis 168 is regulated by the repressor TreR , 1996, Journal of bacteriology.

[61]  A Schulz,et al.  hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes , 1996, Journal of bacteriology.

[62]  S. Taylor,et al.  Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated , 1995, Journal of bacteriology.

[63]  P. Rather,et al.  Identification and analysis of aarP, a transcriptional activator of the 2'-N-acetyltransferase in Providencia stuartii , 1995, Journal of bacteriology.

[64]  A. Sonenshein,et al.  Transcriptional regulation of Bacillus subtilis citrate synthase genes , 1994, Journal of bacteriology.

[65]  D. Sinderen,et al.  Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis , 1994, Molecular microbiology.

[66]  C. Y. Lee,et al.  Cloning, sequencing, and genetic characterization of regulatory genes, rinA and rinB, required for the activation of staphylococcal phage phi 11 int expression , 1993, Journal of bacteriology.

[67]  F. Daldal,et al.  petR, located upstream of the fbcFBC operon encoding the cytochrome bc1 complex, is homologous to bacterial response regulators and necessary for photosynthetic and respiratory growth of Rhodobacter capsulatus , 1992, Molecular microbiology.

[68]  K. Makino,et al.  Purification and characterization of the Escherichia coli OxyR protein, the positive regulator for a hydrogen peroxide-inducible regulon. , 1991, Journal of biochemistry.

[69]  S. Silver,et al.  Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[70]  C. Dorman Nucleoid-associated proteins and bacterial physiology. , 2009, Advances in applied microbiology.

[71]  Marcus J. Claesson,et al.  Genome-scale analyses of health-promoting bacteria: probiogenomics , 2009, Nature Reviews Microbiology.

[72]  Sarath Chandra Janga,et al.  Conservation of adjacency as evidence of paralogous operons. , 2004, Nucleic acids research.