Bias determination and precision validation of ozone profiles from MIPAS-Envisat retrieved with the IMK-IAA processor

This paper characterizes vertical ozone profiles retrieved with the IMK-IAA (Institute for Meteorology and Climate Research, Karlsruhe ? Instituto de Astrofisica de Andalucia) science-oriented processor from spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the environmental satellite Envisat. Bias determination and precision validation is performed on the basis of correlative measurements by ground-based lidars, Fourier transform infrared spectrometers, and microwave radiometers as well as balloon-borne ozonesondes, the balloon-borne version of MIPAS, and two satellite instruments (Halogen Occultation Experiment and Polar Ozone and Aerosol Measurement III). Percentage mean differences between MIPAS and the comparison instruments for stratospheric ozone are within ±10%. The precision in this altitude region is estimated at values between 5 and 10% which gives an accuracy of 15 to 20%. Below 18 km, the spread of the percentage mean differences is larger and the precision increases to values of more than 20% depending on altitude and latitude. The main reason for the degraded precision at low altitudes is attributed to undetected thin clouds which affect MIPAS retrievals, and to the influence of uncertainties in the water vapor concentration.

[1]  Student,et al.  THE PROBABLE ERROR OF A MEAN , 1908 .

[2]  James M. Russell,et al.  The Halogen Occultation Experiment , 1993 .

[3]  H. Bovensmann,et al.  Cross comparisons of O3 and NO2 measured by the atmospheric ENVISAT instruments GOMOS, MIPAS, and SCIAMACHY , 2005 .

[4]  B. Connor,et al.  Intercomparison of remote sounding instruments , 1999 .

[5]  J. Remedios,et al.  Colour indices for the detection and differentiation of cloud types in infra-red limb emission spectra , 2004 .

[6]  Hermann Oelhaf,et al.  Remote sensing of vertical profiles of atmospheric trace constituents with MIPAS limb emission spectrometers , 1998, Asia-Pacific Environmental Remote Sensing.

[7]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[8]  Colette Brogniez,et al.  POAM II retrieval algorithm and error analysis , 1997 .

[9]  T. Clarmann,et al.  MIPAS: an instrument for atmospheric and climate research , 2007 .

[10]  J. Zawodny,et al.  Validation of POAM III ozone: Comparisons with ozonesonde and satellite data , 2003 .

[11]  S. R. Drayson,et al.  Halogen Occultation Experiment ozone channel validation , 1996 .

[12]  Costas A. Varotsos,et al.  Geophysical validation of MIPAS-ENVISAT operational ozone data , 2007 .

[13]  Franz Schreier,et al.  A blind test retrieval experiment for infrared limb emission spectrometry , 2003 .

[14]  T. Clarmann,et al.  Retrieval of stratospheric ozone profiles from MIPAS/ENVISAT limb emission spectra: a sensitivity study , 2005 .

[15]  A Dudhia,et al.  Optimized spectral microwindows for data analysis of the Michelson Interferometer for Passive Atmospheric Sounding on the Environmental Satellite. , 2000, Applied optics.

[16]  Jerry Lumpe,et al.  POAM III retrieval algorithm and error analysis: POAM III RETRIEVAL ALGORITHM AND ERROR ANALYSIS , 2002 .

[17]  M. Höpfner,et al.  Ozone profiles and total column amounts derived at Izaña, Tenerife Island, from FTIR solar absorption spectra, and its validation by an intercomparison to ECC-sonde and Brewer spectrometer measurements , 2005 .

[18]  M. Kiefer,et al.  Retrieval of temperature and tangent altitude pointing from limb emission spectra recorded from space by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) , 2003 .

[19]  J. Urban,et al.  Evolution of stratospheric ozone during winter 2002/2003 as observed by a ground-based millimetre wave radiometer at Kiruna, Sweden , 2005 .

[20]  Guido Maucher,et al.  Design and characterization of the balloon-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B2). , 2004, Applied optics.

[21]  M. Natarajan,et al.  Impact of twilight gradients on the retrieval of mesospheric ozone from HALOE , 2005 .

[22]  Addendum to ``Validation of remotely sensed profiles of atmospheric state variables: strategies and terminology , 2006 .

[23]  Gert König-Langlo,et al.  The Polar Ozone and Aerosol Measurement (POAM) III instrument and early validation results , 1999 .

[24]  H. Oelhaf,et al.  Remote sensing of vertical profiles of atmospheric trace constituents with MlPAS limb-emission spectrometers. , 1996, Applied Optics.

[25]  W. Steinbrecht,et al.  Results of the 1998 Ny‐Ålesund Ozone Monitoring Intercomparison , 1999 .

[26]  T. Clarmann Validation of remotely sensed profiles of atmospheric state variables: strategies and terminology , 2006 .

[27]  Clive D. Rodgers,et al.  Intercomparison of direct and indirect measurements: Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) versus sonde ozone profiles , 2004 .

[28]  J. Russell,et al.  Comparisons of MIPAS/ENVISAT ozone profiles with SMR/ODIN and HALOE/UARS observations , 2005 .

[29]  Tilman Steck,et al.  Methods for determining regularization for atmospheric retrieval problems. , 2002, Applied optics.

[30]  T. Clarmann,et al.  Elimination of hidden a priori information from remotely sensed profile data , 2006 .

[31]  S Godin,et al.  Ozone differential absorption lidar algorithm intercomparison. , 1999, Applied optics.

[32]  MIPAS Level 1B algorithms overview: operational processing and characterization , 2006 .

[33]  M. Höpfner,et al.  Evolution of ozone and ozone-related species over Kiruna during the SOLVE/THESEO 2000 campaign retrieved from ground-based millimeter-wave and infrared observations , 2002 .