The multiplicative property characterizes $\ell_p$ and $L_p$ norms
暂无分享,去创建一个
[1] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[2] Everett W. Howe. A New Proof of Erdos's Theorem on Monotone Multiplicative Functions , 1986 .
[3] J. Krivine,et al. Sous-espaces de dimension finie des espaces de Banach reticules , 1976 .
[4] Ion Nechita,et al. Catalytic Majorization and $$\ell_p$$ Norms , 2008 .
[5] F. Bohnenblust,et al. An axiomatic characterization of Lp-spaces , 1940 .
[6] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[7] Everett W. Howe. A new proof of Erdo¨s's theorem on monotone , 1986 .
[8] Guillaume Aubrun,et al. Stochastic domination for iterated convolutions and catalytic majorization , 2007, 0707.0211.
[9] Raphaël Cerf,et al. A Short Proof of Cramér's Theorem in ℝ , 2010, Am. Math. Mon..
[10] C. Palazuelos,et al. The natural rearrangement invariant structure on tensor products , 2008 .
[11] Greg Kuperberg,et al. The capacity of hybrid quantum memory , 2002, IEEE Trans. Inf. Theory.
[12] J. Lindenstrauss,et al. Handbook of geometry of Banach spaces , 2001 .
[13] E. Odell,et al. Chapter 3 L p spaces , 2001 .