Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist.

[1]  K. Yoshinari,et al.  Enterobacteria-mediated deconjugation of taurocholic acid enhances ileal farnesoid X receptor signaling. , 2012, European journal of pharmacology.

[2]  M. Trauner,et al.  Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. , 2012, Gastroenterology.

[3]  K. Zimmermann,et al.  A vegan or vegetarian diet substantially alters the human colonic faecal microbiota , 2012, European Journal of Clinical Nutrition.

[4]  K. Yoshinari,et al.  Fibroblast growth factor 19 treatment ameliorates disruption of hepatic lipid metabolism in farnesoid X receptor (Fxr)-null mice. , 2011, Biological & pharmaceutical bulletin.

[5]  V. Tremaroli,et al.  Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88 , 2011, Gut.

[6]  S. Kliewer,et al.  FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis , 2011, Science.

[7]  Sandra Castillo,et al.  Data analysis tool for comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. , 2011, Analytical chemistry.

[8]  E. Want,et al.  Colonization-Induced Host-Gut Microbial Metabolic Interaction , 2011, mBio.

[9]  E. Want,et al.  Systemic gut microbial modulation of bile acid metabolism in host tissue compartments , 2010, Proceedings of the National Academy of Sciences.

[10]  Ann M. Thomas,et al.  Genome‐wide tissue‐specific farnesoid X receptor binding in mouse liver and intestine , 2010, Hepatology.

[11]  P. Dawson,et al.  Bile acid transporters , 2009, Journal of Lipid Research.

[12]  J. Chiang,et al.  Bile acids: regulation of synthesis , 2009, Journal of Lipid Research.

[13]  P. Dent,et al.  Bile acids as regulatory molecules , 2009, Journal of Lipid Research.

[14]  Robert Castelo,et al.  Reverse Engineering Molecular Regulatory Networks from Microarray Data with qp-Graphs , 2009, J. Comput. Biol..

[15]  Elaine Holmes,et al.  Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes , 2008, Molecular systems biology.

[16]  Johan Auwerx,et al.  Targeting bile-acid signalling for metabolic diseases , 2008, Nature Reviews Drug Discovery.

[17]  S. Kliewer,et al.  Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine Published, JLR Papers in Press, August 24, 2007. , 2007, Journal of Lipid Research.

[18]  J. Auwerx,et al.  Compromised Intestinal Lipid Absorption in Mice with a Liver-Specific Deficiency of Liver Receptor Homolog 1 , 2007, Molecular and Cellular Biology.

[19]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[20]  Dae-Joong Kang,et al.  Bile salt biotransformations by human intestinal bacteria Published, JLR Papers in Press, November 18, 2005. , 2006, Journal of Lipid Research.

[21]  S. Kliewer,et al.  Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. , 2005, Cell metabolism.

[22]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[23]  K. Bamberg,et al.  Differential regulation of cytosolic and peroxisomal bile acid amidation by PPAR activation favors the formation of unconjugated bile acids , 2004 .

[24]  D. Russell The enzymes, regulation, and genetics of bile acid synthesis. , 2003, Annual review of biochemistry.

[25]  Roberto Pellicciari,et al.  Structural basis for bile acid binding and activation of the nuclear receptor FXR. , 2003, Molecular cell.

[26]  D. Russell,et al.  Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. , 2002, The Journal of clinical investigation.

[27]  Masahiro Tohkin,et al.  Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis , 2000, Cell.

[28]  I. Björkhem,et al.  Thyroid hormone suppresses hepatic sterol 12alpha-hydroxylase (CYP8B1) activity and messenger ribonucleic acid in rat liver: failure to define known thyroid hormone response elements in the gene. , 1999, Biochimica et biophysica acta.

[29]  K. Einarsson,et al.  Bile acid synthesis in man: assay of hepatic microsomal cholesterol 7 alpha-hydroxylase activity by isotope dilution-mass spectrometry. , 1986, Journal of lipid research.

[30]  M. Riottot,et al.  Increase in the ileal absorption rate of sodium taurocholate in germ-free or conventional rats given an amylomaize-starch diet , 1985, British Journal of Nutrition.

[31]  P. Klein,et al.  An improved procedure for the synthesis of glycine and taurine conjugates of bile acids. , 1977, Journal of lipid research.

[32]  B. Gustafsson,et al.  Influence of cholesterol feeding on liver microsomal metabolism of steroids and bile acids in conventional and germ-free rats. , 1975, The Journal of biological chemistry.

[33]  T. Midtvedt Microbial bile acid transformation. , 1974, The American journal of clinical nutrition.

[34]  B. Wostmann Intestinal bile acids and cholesterol absorption in the germfree rat. , 1973, The Journal of nutrition.

[35]  B. Wostmann,et al.  Fecal neutral steroids and bile acids from germfree rats. , 1969, Journal of lipid research.

[36]  S. Lindstedt,et al.  Turnover and Nature of Fecal Bile Acids in Germfree and Infected Rats Fed Cholic Acid-24-14C. Bile Acids and Steroids 41.∗ † , 1957, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.