A new mixed halide, Cs2HgI2Cl2: molecular engineering for a new nonlinear optical material in the infrared region.

A new mixed halide, Cs(2)HgI(2)Cl(2), which contains the highly polar tetrahedron of anion (HgI(2)Cl(2))(2-), has been designed and synthesized by reaction in solution. In its single crystal, the isolated (HgCl(2)I(2))(2-) groups are arranged to form chains. The chains are then further connected into a three-dimensional framework through the Cs atoms that occupy the empty spaces surrounded by halide atoms. All the polar (HgCl(2)I(2))(2-) groups align in such a way that gives a net polarization, leading it to show a phase matchable second harmonic generation (SHG) effect as strong as that of KH(2)PO(4) (KDP) based on the powder SHG measurement. It also displays excellent transparency in the range of 0.4-41 μm with relatively high thermal stability. A preliminary measurement indicates that its laser-induced damage threshold is about 83 MW/cm(2), about twice that of AgGaS(2). This study demonstrates that Cs(2)HgI(2)Cl(2) is a promising nonlinear optical material in the infrared region.

[1]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[2]  Yicheng Wu,et al.  New nonlinear-optical crystal: LiB 3 O 5 , 1989 .

[3]  D. Chemla,et al.  Silver thiogallate, a new material with potential for infrared devices , 1971 .

[4]  K. Knowles,et al.  The structure of {111} age-hardening precipitates in Al−Cu−Mg−Ag alloys , 1988 .

[5]  W. Cheng,et al.  Syntheses and characterization of new mid-infrared transparency compounds: centric Ba2BiGaS5 and acentric Ba2BiInS5. , 2011, Inorganic chemistry.

[6]  Donald M. Burland,et al.  SECOND-ORDER NONLINEARITY IN POLED-POLYMER SYSTEMS , 1994 .

[7]  Hans P. Jenssen,et al.  Advanced solid-state lasers , 1991 .

[8]  D. Lovell Patent Reviews: 3,767,285; 3,770,966; 3,792,924; 3,834,808; 3,888,568; 3,920,326; 3,920,330; 3,920,331; 3,922,061; 3,924,924; 3,927,934; 3,928,764; 3,935,382; 3,936,153; 3,938,882; 3,938,884; 3,941,457; 3,944,321; 3,944,322; 3,947,085 , 1977 .

[9]  I. Gautier-Luneau,et al.  Promising material for infrared nonlinear optics: NaI(3)O(8) salt containing an octaoxotriiodate(V) anion formed from condensation of [IO(3)](-) ions. , 2007, Angewandte Chemie.

[10]  W. Smith KDP and ADP transmission in the vacuum ultraviolet. , 1977 .

[11]  Zheshuai Lin,et al.  BaAl4Se7: a new infrared nonlinear optical material with a large band gap. , 2011, Dalton transactions.

[12]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[13]  Zheshuai Lin,et al.  The development of new borate-based UV nonlinear optical crystals , 2005 .

[14]  Kai Feng,et al.  LiGaGe2Se6: a new IR nonlinear optical material with low melting point. , 2012, Inorganic chemistry.

[15]  G. D. Boyd,et al.  LiNbO3: AN EFFICIENT PHASE MATCHABLE NONLINEAR OPTICAL MATERIAL , 1964 .

[16]  Shaojun Zhang,et al.  MgTeMoO6: A neutral layered material showing strong second-harmonic generation , 2012 .

[17]  D. Nikogosyan,et al.  Nonlinear Optical Crystals: A Complete Survey , 2005 .

[18]  Ling Chen,et al.  Noncentrosymmetric inorganic open-framework chalcohalides with strong middle IR SHG and red emission: Ba3AGa5Se10Cl2 (A = Cs, Rb, K). , 2012, Journal of the American Chemical Society.

[19]  Peter G. Schunemann,et al.  Increasing the Laser Induced Damage Threshold of Single Crystal ZnGeP2 , 2006 .

[20]  Frank Kenneth Hopkins,et al.  Nonlinear optical crystal development for laser wavelength shifting at AFRL Materials Directorate , 1999, Optics & Photonics.

[21]  Konstantin L. Vodopyanov,et al.  Tunable middle infrared downconversion in GaSe and AgGaS2 , 1998 .

[22]  Ning Ye,et al.  New NLO material in IR region: CsGeCl3 , 1998, Other Conferences.

[23]  K. Kato,et al.  Parametric oscillation at 3.2 mu m in KTP pumped at 1.064 mu m , 1991 .

[24]  J. Qin,et al.  A novel nonlinear optical crystal for the IR region: noncentrosymmetrically crystalline CsCdBr3 and its properties. , 2003, Inorganic chemistry.

[25]  J. Qin,et al.  NaSb3F10: A new second-order nonlinear optical crystal to be used in the IR region with very high laser damage threshod , 2009 .

[26]  P. Halasyamani,et al.  Two new noncentrosymmetric (NCS) polar oxides: syntheses, characterization, and structure-property relationships in BaMTe2O7 (M = Mg2+ or Zn2+). , 2012, Inorganic chemistry.

[27]  M. L. Brown,et al.  Tricaesium tetrachloromercurate(II) chloride , 1976 .

[28]  J. Qin,et al.  Mercury Bromide (HgBr2): A promising nonlinear optical material in IR region with a high laser damage threshold , 2008 .

[29]  Bing-Ping Yang,et al.  Structures and properties of functional metal iodates , 2011 .

[30]  Zheshuai Lin,et al.  Bi2(IO4)(IO3)3: a new potential infrared nonlinear optical material containing [IO4](3-) anion. , 2011, Inorganic chemistry.

[31]  Ludmila I. Isaenko,et al.  Mid-infrared (2.75-6.0 m) second-harmonic generation in LiInS 2 , 2001, CLEO 2001.

[32]  G. D. Boyd,et al.  Linear and nonlinear optical properties of some ternary selenides , 1972 .

[33]  G. Boyd,et al.  LINEAR AND NONLINEAR OPTICAL PROPERTIES OF ZnGeP2 AND CdSe , 1971 .

[34]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[35]  Ning Ye,et al.  Growth and Characterization of BaGa4S7: A New Crystal for Mid-IR Nonlinear Optics , 2009 .

[36]  S. R. LeClair,et al.  Relationship of the second order nonlinear optical coefficient to energy gap in inorganic non-centrosymmetric crystals , 1997 .