Mesoscale connectomics

Brain cells communicate with one another via local and long-range synaptic connections. Structural connectivity is the foundation for neural function. Brain-wide connectivity can be described at macroscopic, mesoscopic and microscopic levels. The mesoscale connectome represents connections between neuronal types across different brain regions. Building a mesoscale connectome requires a detailed understanding of the cell type composition of different brain regions and the patterns of inputs and outputs that each of these cell types receives and forms, respectively. In this review, I discuss historical and contemporary tracing techniques in both anterograde and retrograde directions to map the input and output connections at population and individual cell levels, as well as imaging and network analysis approaches to build mesoscale connectomes for mammalian brains.

[1]  Samuel D. Gale,et al.  Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Edward M Callaway,et al.  Improved Monosynaptic Neural Circuit Tracing Using Engineered Rabies Virus Glycoproteins. , 2016, Cell reports.

[3]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[4]  Ana González-Rueda,et al.  Life-Long Genetic and Functional Access to Neural Circuits Using Self-Inactivating Rabies Virus , 2017, Cell.

[5]  Hanchuan Peng,et al.  mGRASP enables mapping mammalian synaptic connectivity with light microscopy , 2011, Nature Methods.

[6]  David J. Anderson,et al.  A Cre-Dependent, Anterograde Transsynaptic Viral Tracer for Mapping Output Pathways of Genetically Marked Neurons , 2011, Neuron.

[7]  B. Roska,et al.  Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing. , 2017, Neuron.

[8]  Silvia Arber,et al.  Motor-Circuit Communication Matrix from Spinal Cord to Brainstem Neurons Revealed by Developmental Origin , 2014, Cell.

[9]  Miao He,et al.  Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism , 2017, Cell.

[10]  Cheuk Y. Tang,et al.  Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes , 2016, Cell.

[11]  Daniel R. Berger,et al.  The Fuzzy Logic of Network Connectivity in Mouse Visual Thalamus , 2016, Cell.

[12]  Liqun Luo,et al.  Viral-genetic tracing of the input–output organization of a central norepinephrine circuit , 2015, Nature.

[13]  Kevin T. Beier,et al.  Neuroanatomy goes viral! , 2015, Front. Neuroanat..

[14]  E. Kuramoto,et al.  Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior-ventral lateral nuclear complex in the rat. , 2015, Cerebral cortex.

[15]  W M Cowan,et al.  The Emergence of Modern Neuroanatomy and Developmental Neurobiology , 1998, Neuron.

[16]  Henry Kennedy,et al.  Brain structure and dynamics across scales: in search of rules , 2016, Current Opinion in Neurobiology.

[17]  Shaoqun Zeng,et al.  High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level , 2016, Nature Communications.

[18]  Kevin T. Beier,et al.  Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms , 2015, The Journal of comparative neurology.

[19]  David C Van Essen Cartography and connectomes. , 2013, Neuron.

[20]  Hongkui Zeng,et al.  Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.

[21]  Edward S Boyden,et al.  Nanoscale Imaging of RNA with Expansion Microscopy , 2016, Nature Methods.

[22]  Won-Ki Jeong,et al.  Whole-brain serial-section electron microscopy in larval zebrafish , 2017, Nature.

[23]  Hassana K. Oyibo,et al.  Sequencing the Connectome , 2012, PLoS biology.

[24]  Travis A. Jarrell,et al.  The Connectome of a Decision-Making Neural Network , 2012, Science.

[25]  Brett J. Graham,et al.  Anatomy and function of an excitatory network in the visual cortex , 2016, Nature.

[26]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[27]  O. Sporns,et al.  Network neuroscience , 2017, Nature Neuroscience.

[28]  T. Cutforth,et al.  Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons , 2011, Nature.

[29]  Aravinthan D. T. Samuel,et al.  The wiring diagram of a glomerular olfactory system , 2016, bioRxiv.

[30]  Ian R. Wickersham,et al.  The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas , 2017, Neuron.

[31]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[32]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[33]  L. Looger,et al.  A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons , 2016, Neuron.

[34]  Jeff W. Lichtman,et al.  Clarifying Tissue Clearing , 2015, Cell.

[35]  Ian R. Wickersham,et al.  Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons , 2018, Nature Neuroscience.

[36]  D. Fitzpatrick,et al.  Opportunities and challenges in modeling human brain disorders in transgenic primates , 2016, Nature Neuroscience.

[37]  H. Seung,et al.  Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging , 2011, Nature Methods.

[38]  Kristina J. Nielsen,et al.  Targeting Single Neuronal Networks for Gene Expression and Cell Labeling In Vivo , 2010, Neuron.

[39]  L. Luo,et al.  Genetic strategies to access activated neurons , 2017, Current Opinion in Neurobiology.

[40]  Balázs Rózsa,et al.  Single-cell–initiated monosynaptic tracing reveals layer-specific cortical network modules , 2015, Science.

[41]  M. Helmstaedter,et al.  Axonal synapse sorting in medial entorhinal cortex , 2017, Nature.

[42]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  Srinivas C. Turaga,et al.  Mapping social behavior-induced brain activation at cellular resolution in the mouse. , 2014, Cell reports.

[44]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[45]  Mark Johnson,et al.  Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango , 2017, Neuron.

[46]  J. Lichtman,et al.  From Cajal to Connectome and Beyond. , 2016, Annual review of neuroscience.

[47]  Karel Svoboda,et al.  A platform for brain-wide imaging and reconstruction of individual neurons , 2016, eLife.

[48]  Jens Hjerling-Leffler,et al.  Disentangling neural cell diversity using single-cell transcriptomics , 2016, Nature Neuroscience.

[49]  L. Zweifel,et al.  Manipulating Gene Expression in Projection‐Specific Neuronal Populations Using Combinatorial Viral Approaches , 2013, Current protocols in neuroscience.

[50]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[51]  Karl Deisseroth,et al.  An interactive framework for whole-brain maps at cellular resolution , 2017, Nature Neuroscience.

[52]  Karl Deisseroth,et al.  Multiplexed Intact-Tissue Transcriptional Analysis at Cellular Resolution , 2016, Cell.

[53]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[54]  Brian Zingg,et al.  AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors , 2017, Neuron.

[55]  Liqun Luo,et al.  Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses , 2015, The Journal of Neuroscience.

[56]  Jeff W. Lichtman,et al.  NEW TOOLS FOR THE BRAINBOW TOOLBOX , 2013, Nature Methods.

[57]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[58]  Marc Modat,et al.  aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data , 2016, Nature Communications.

[59]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[60]  Lars E. Borm,et al.  The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing , 2017, Science.

[61]  Edward S. Boyden,et al.  Expansion microscopy , 2015, Science.

[62]  Nathan C. Klapoetke,et al.  Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance , 2015, Neuron.

[63]  Edward S Boyden,et al.  Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies , 2016, Nature Biotechnology.

[64]  Justus M. Kebschull,et al.  High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA , 2016, Neuron.

[65]  Attila Losonczy,et al.  Rabies Virus CVS-N2cΔG Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability , 2016, Neuron.

[66]  Fei Zhao,et al.  Anterograde monosynaptic transneuronal tracers derived from herpes simplex virus 1 strain H129 , 2017, Molecular Neurodegeneration.

[67]  Justin P Sandoval,et al.  Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex , 2017, Science.

[68]  Aaron S. Andalman,et al.  Structural and molecular interrogation of intact biological systems , 2013, Nature.

[69]  K. Deisseroth,et al.  Advanced CLARITY for rapid and high-resolution imaging of intact tissues , 2014, Nature Protocols.

[70]  N. Renier,et al.  iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging , 2014, Cell.

[71]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[72]  D. Dickel,et al.  Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation , 2018, Nature Neuroscience.

[73]  Talia N. Lerner,et al.  Communication in Neural Circuits: Tools, Opportunities, and Challenges , 2016, Cell.

[74]  Sripriya Ravindra Kumar,et al.  Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain , 2015, Nature Biotechnology.

[75]  Lief E. Fenno,et al.  Targeting cells with single vectors using multiple-feature Boolean logic , 2014, Nature Methods.

[76]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[77]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[78]  V. Gradinaru,et al.  Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems , 2017, Nature Neuroscience.

[79]  O. Sporns Contributions and challenges for network models in cognitive neuroscience , 2014, Nature Neuroscience.